x^2 + y^2 +1 > hoặc = xy + x + y
Bài 1: Rút gọn các biểu thức sau: a)√(5+2√5)² - √5 ______ √5+2 b) x-2 √xy + y _______________ X - Y (x khác y , x > hoặc = 0 , y > hoặc = 0 )
b: \(x-2\sqrt{xy}+y=\left(\sqrt{x}-\sqrt{y}\right)^2\)
Cho (xy + 1)/y = (yz + 1)/z = (zx + 1)/x.Chứng minh rằng: x=y hoặc y=z hoặc z=x hoặc x^2y^2z^2=1
1. tìm x,y :x(x -y)=3/10;y(x -y)=-3/50 2.
x+y=2 cmr xy < hoặc = 1
Ta có : \(x+y=2< =>\left(x+y\right)^2=4< =>\left(\frac{x+y}{2}\right)^2=1\)
Bài toán quy về chứng minh \(xy\le\left(\frac{x+y}{2}\right)^2\)
\(< =>xy\le\frac{\left(x+y\right)^2}{4}< =>4xy\le x^2+y^2+2xy\)
\(< =>4xy-2xy\le x^2+y^2< =>\left(x-y\right)^2\ge0\)*đúng*
Vậy ta có điều phải chứng minh
cho x,y lớn hơn hoặc bằng 1 , CMR 1/1+x^2 +1/1+y^2 lớn hơn hoặc bằng 2/1+xy
\(\Leftrightarrow\frac{1}{1+x^2}-\frac{1}{1+xy}+\frac{1}{1+y^2}-\frac{1}{1+xy}\ge0.\)
\(\Leftrightarrow\frac{x\left(y-x\right)}{\left(1+x^2\right)\left(1+xy\right)}+\frac{y\left(x-y\right)}{\left(1+y^2\right)\left(1+xy\right)}\ge0\)
\(\Leftrightarrow\frac{x\left(y-x\right)\left(1+y^2\right)+y\left(x-y\right)\left(1+x^2\right)}{\left(1+x^2\right)\left(1+y^2\right)\left(1+xy\right)}\ge0\)
\(\Leftrightarrow\frac{\left(x-y\right)\left(y+x^2y-x-xy^2\right)}{\left(1+x^2\right)\left(1+y^2\right)\left(1+xy\right)}\ge0\)
\(\Leftrightarrow\frac{\left(x-y\right)^2\left(xy-1\right)}{\left(1+x^2\right)\left(1+y^2\right)\left(1+xy\right)}\ge0\left(lđ\forall x,y\ge1\right)\)
Dấu "=" xra khi x=y=1
XY+1/Y=YZ+1/Z=XZ+1/X
cmr x=y=z hoặc x^2+y^2+z^2=1
1 khai triển các biểu thức sau
a, ( x + y ) ^2
b, ( x - 2 y ) ^2
c, ( xy^2 + 1 ) ( xy^2 - 1 )
d, ( x+ y ) ^2 ( x - y )^2
2 viết các biểu thức dưới dạng bình phương của 1 tổng hoặc hiệu
a, x^2 + 4x + 4
b, 9x^2 - 12x +4
c, x^2/4 + x + 1
d, ( x + y )^2 - 4 ( x + y ) +4
giúp mik vs
\(1,\\ a,=x^2+2xy+y^2\\ b,=x^2-4xy+4y^2\\ c,=x^2y^4-1\\ d,=\left[\left(x-y\right)\left(x+y\right)\right]^2=\left(x^2-y^2\right)^2=x^4-2x^2y^2+y^4\\ 2,\\ a,=\left(x+2\right)^2\\ b,=\left(3x-2\right)^2\\ c,=\left(\dfrac{x}{2}+1\right)^2\\ d,=\left(x+y-2\right)^2\)
Bài 1 em dùng HĐT nha
Bài 2:
a. x2 + 4x + 4
= x2 + 2.2.x + 22
= (x + 2)2
b. 9x2 - 12x + 4
= (3x)2 - 3x.2.2 + 22
= (3x - 2)2
c. \(\dfrac{x^2}{4}+x+1\)
= \(\left(\dfrac{x}{2}\right)^2+2.\dfrac{x}{2}.1+1^2\)
= \(\left(\dfrac{x}{2}+1\right)^2\)
Cho x, y, z là các số lớn hơn hoặc bằng 1. Chứng minh rằng : 1/1+x mũ 2 + 1/1+y mũ 2 lớn hơn hoặc bằng 2/1+xy
\(\frac{1}{1+x^2}+\frac{1}{1+y^2}\ge\frac{2}{1+xy}\) ( 1 )
\(\Leftrightarrow\left(\frac{1}{1+x^2}-\frac{1}{1+xy}\right)+\left(\frac{1}{1+y^2}-\frac{1}{1+xy}\right)\ge0\)
\(\Leftrightarrow\frac{x\left(y-x\right)}{\left(1+x^2\right)\left(1+xy\right)}+\frac{y\left(x-y\right)}{\left(1+xy^2\right)\left(1+xy\right)}\ge0\)
\(\Leftrightarrow\frac{\left(y-x\right)^2\left(xy-1\right)}{\left(1+x^2\right)\left(1+y^2\right)\left(1+xy\right)}\ge0\) ( 2 )
\(\Rightarrow\)Bất đẳng thức ( 2 ) \(\Rightarrow\) Bất đẳng thức ( 1 )
( Dấu " = " xảy ra khi x = y )
Chúc bạn học tốt !!!
cho các số x,y >0 thoả mãn điều kiện x+y=2. CMR:
a) xy(x2+y2) < hoặc = 2
b) \(\frac{1}{x^2+y^2}+\frac{1}{xy}>=\frac{3}{2}\)
a, Áp dụng bđt cosi ta có :
2xy.(x^2+y^2) < = (2xy+x^2+y^2)^2/4 = (x+y)^4/4 = 2^4/4 = 4
<=> xy.(x^2+y^2) < = 2
=> ĐPCM
Dấu "=" xảy ra <=> x=y=1
Vậy ............
Tk mk nha
b, Có : x.y < = (x+y)^2/4 = 2^2/4 = 1
<=> 2xy < = 2
Ta có : 1/x^2+y^2 + 1/xy = 1/x^2+y^2 + 1/2xy + 1/2xy >= \(\frac{9}{x^2+y^2+2xy+2xy}\)
= \(\frac{9}{\left(x+y\right)^2+2xy}\)
< = \(\frac{9}{2^2+2}\)= 3/2
=> ĐPCM
Dấu "=" xảy ra <=> x=y=1
Tìm min hoặc max E=(x^2+x)(x^2+x-4) G=1-x^2+xy-y^2