tính A=2022²⁰²² +1/ 2022²⁰²³+1
\(3a-b=\dfrac{1}{2}\left(a+b\right)\) tính \(\dfrac{a^{2022}+3^{2022}}{b^{2022}+5^{2022}}\)
3a-b=1/2(a+b)
=>6a-2b=a+b
=>5a=3b
=>a/3=b/5=k
=>a=3k; b=5k
\(A=\dfrac{a^{2022}+3^{2022}}{b^{2022}+5^{2022}}\)
\(=\dfrac{3^{2022}\left(k^{2022}+1\right)}{5^{2022}\left(k^{2022}+1\right)}=\left(\dfrac{3}{5}\right)^{2022}\)
tính nhanh : 2022 +2022 : 1/3 +2022+2022:1/5 =
`2022+2022:1/3+2022+2022:1/5`
`=2022+2022xx3+2022+2022xx5`
`=2022xx(1+3+1+5)`
`=2022xx10=20220`
`->2022+2022×3+2022+2022×5`
`->`\( 2022 × ( 1 + 3 + 1 + 5 )\)
`->2022xx10`
`->20220`
Tính nhanh : 2022 : 0,25 + 2022 : 0,1 - 2022 : 0,5 + 2022 : 1/6
`2022 : 0,25 + 2022 : 0,1 - 2022 : 0,5 + 2022 : 1/6`
`=2022 xx 4 +2022 xx 10 - 2022 xx 2 + 2022 xx 6`
`= 2022 xx(4+10-2+6)`
`=2022 xx 18`
`=36396`
tính C=a^2022+3^2022/b^2022+5^2022 biết a,b khác 0 thõa mãn 3a-b=1/2(a+b)
mình cần gấp, mọi người làm nhanh giúp mình
cho A=1+2022+2022^2+2022^3 +2022^4+...+2022^2016 + 2022^2017
và B= 2022^2018-1 . so sánh A và B
\(2022A=2022+2022^2+2022^3+2022^4+...+2022^{2018}\)
\(2021A=2022A-A=2022^{2018}-1\Rightarrow A=\dfrac{2022^{2018}-1}{2021}\)
\(\Rightarrow A< B\)
So sánh
A = \(\dfrac{2022^{2023}+1}{2022^{2024}+1}\) và B = \(\dfrac{2022^{2022}+1}{2022^{2023}+1}\)
Trước hết ta phải chứng minh \(\dfrac{a}{b}< \dfrac{a+1}{b+1}\) (a, b ϵ N; a < b).
Thật vậy, \(\dfrac{a}{b}=\dfrac{a\left(b+1\right)}{b\left(b+1\right)}=\dfrac{a+ab}{b^2+b}\) và \(\dfrac{a+1}{b+1}=\dfrac{\left(a+1\right)b}{\left(b+1\right)b}=\dfrac{ab+b}{b^2+b}\).
Mà theo giả thuyết là a < b nên \(\dfrac{a+ab}{b^2+b}< \dfrac{ab+b}{b^2+b}\), suy ra \(\dfrac{a}{b}< \dfrac{a+1}{b+1}\) (a, b ϵ N; a < b).
Từ đây ta có:
\(B=\dfrac{2022^{2022}+1}{2022^{2023}+1}=\dfrac{2022^{2023}+2022}{2022^{2024}+2022}=\dfrac{2022^{2023}+2021+1}{2022^{2024}+2021+1}\)
Đặt \(A_1=\dfrac{2022^{2023}+2}{2022^{2024}+2}=\dfrac{2022^{2023}+1+1}{2022^{2024}+1+1}\), rõ ràng \(A_1>A\).
Đặt \(A_2=\dfrac{2022^{2023}+3}{2022^{2024}+3}=\dfrac{2022^{2023}+2+1}{2022^{2024}+2+1}\), rõ ràng \(A_2>A_1\).
...
Đặt \(A_{2020}=\dfrac{2022^{2023}+2021}{2022^{2024}+2021}=\dfrac{2022^{2023}+2020+1}{2022^{2024}+2020+1}\), rõ ràng \(A_{2020}>A_{2019}\) và \(B>A_{2020}\).
Suy ra \(B>A_{2020}>A_{2019}>...>A_2>A_1>A\). Vậy A < B.
Ta có A = \(\dfrac{2022^{2023}}{2022^{2024}}=\dfrac{1}{2022}\) ; B = \(\dfrac{2022^{2022}}{2022^{2023}}=\dfrac{1}{2022}\)
Mà \(\dfrac{1}{2022}=\dfrac{1}{2022}\)
Vậy A = B
so sánh A=2022^100+1/2022^99+1 và B=2022^101+1/2022^100+1
\(\dfrac{1}{2022}\cdot A=\dfrac{2022^{100}+1}{2022^{100}+100}=1-\dfrac{99}{2022^{100}+100}\)
\(\dfrac{1}{2022}B=\dfrac{2022^{101}+1}{2022^{101}+100}=1-\dfrac{9}{2022^{101}+100}\)
2022^100+100<2022^101+100
=>-99/2022^100+100<-99/2022^101+100
=>A<B
=> A/2022 = 2022^100+1/2022^100+2022 = 1- 2021/2022^100+2022
=> B/2022 = 2022^101+1/2022^101+2022 = 1- 2021/2022^101+2022
Nhận thấy 2022^101 + 2022 > 2022^100 + 2022
=> 2021/2022^101 + 2022 < 2021/2022^100 + 2022
=> B/2022 > A/2022 => B>A
Vậy A<B
so sánh A = 2022^2023 + 3/2022^2022 - 1 và B = 2022^2023 - 2019/2022^2022 - 2
bài 7:a thực hiện phép tính .81 x 2022 + 25 x 2022 - 6 x 2022 .B Tìm x biết ( x - 1 ) 2/3 - 1/5= 2/5
\(a,81\cdot2022+25\cdot2022-6\cdot2022=2022\cdot\left(81+25-6\right)=2022\cdot100=202200\)
\(b,\left(x-1\right)\cdot\frac{2}{3}-\frac{1}{5}=\frac{2}{5}\)
\(\left(x-1\right)\cdot\frac{2}{3}=\frac{3}{5}\)
\(x-1=\frac{9}{10}\)
\(x=\frac{19}{10}\)
Vậy \(x=\frac{19}{10}\)
( Nếu phần b là hỗn số thì mình làm thế kia , còn nếu là nhân thì bạn tham khảo Câu hỏi của lương bảo ngọc - Toán lớp 5 - Học trực tuyến OLM nhé )
81 x 2022 + 25 x 2022 - 6 x 2022
= ( 81 + 25 - 6 ) x 2022
= 100 x 2022
= 202 200
b) \(\left(\text{x - 1}\right)\frac{\text{2}}{\text{3}}-\frac{\text{1}}{\text{5}}=\frac{\text{2}}{\text{5}}\)
\(\frac{\text{3 x }\text{( x - 1 ) }+\text{2}}{\text{3}}=\frac{\text{1}}{\text{5}}+\frac{\text{2}}{\text{5}}=\frac{\text{3}}{\text{5}}\)
=> \(\text{3 x ( x - 1 ) }+\text{2}=\frac{\text{3}}{\text{5}}\text{ x 3 = }\frac{\text{9}}{\text{5}}\)
=> \(\text{3 x ( x - 1 ) }=\frac{\text{9}}{\text{5}}-\text{2}=\frac{\text{-1}}{\text{5}}\)
=> \(\text{ x-1}=\frac{\text{-1}}{\text{5}}:3=\frac{\text{-1}}{\text{15}}\)
=> \(\text{x}=\frac{\text{-1}}{\text{15}}+\text{1 = }\frac{\text{14}}{\text{15}}\)
Tính A=1-2-3+4-5-6+7-8-9+...+2022-2021-2022
A=1−2−3+4−5−6+7−8−9+....+2020−2021−2022D=1-2-3+4-5-6+7-8-9+....+2020-2021-2022
A =(1−2−3)+(4−5−6)+(7−8−9)+....+(2020−2021−2022)D=(1-2-3)+(4-5-6)+(7-8-9)+....+(2020-2021-2022)
A=(−4)+(−7)+(−10)+.....+(−2023)D=(-4)+(-7)+(-10)+.....+(-2023)
A=[(2023−4):3+1].[(−2023−4):2]D=[(2023-4):3+1].[(-2023-4):2]
A=674.(−1013,5)D=674.(-1013,5)
A=−683099
A=1−2−3+4−5−6+7−8−9+....+2020−2021−2022D=1-2-3+4-5-6+7-8-9+....+2020-2021-2022
A =(1−2−3)+(4−5−6)+(7−8−9)+....+(2020−2021−2022)D=(1-2-3)+(4-5-6)+(7-8-9)+....+(2020-2021-2022)
A=(−4)+(−7)+(−10)+.....+(−2023)D=(-4)+(-7)+(-10)+.....+(-2023)
A=[(2023−4):3+1].[(−2023−4):2]D=[(2023-4):3+1].[(-2023-4):2]
A=674.(−1013,5)D=674.(-1013,5)
A=−683099