Tìm x,y:
lx+2l + (y+5)2\(\le0\)
Bài 1:Tìm x,y biết:
a.\((x-\frac{2}{5})^{2010}+(y+\frac{3}{7})^{468}\le0\)
b.\((x+0,7)^{84}+(y-6,3)^{262}\le0\)
c.\((x-5)^{88}+(x+y+3)^{496}\le0\)
Bài 2: Tìm số nguyên dương x,y biết:
\(2^x-2^y=224\)
Bài 1:
a) \(\hept{\begin{cases}\left(x-\frac{2}{5}\right)^{2010}\ge0\left(\forall x\right)\\\left(y+\frac{3}{7}\right)^{468}\ge0\left(\forall y\right)\end{cases}}\Rightarrow\left(x-\frac{2}{5}\right)^{2010}+\left(y+\frac{3}{7}\right)^{468}\ge0\left(\forall x,y\right)\)
Kết hợp với đề bài, dấu "=" xảy ra khi:
\(\hept{\begin{cases}\left(x-\frac{2}{5}\right)^{2010}=0\\\left(y+\frac{3}{7}\right)^{468}=0\end{cases}}\Rightarrow\hept{\begin{cases}x=\frac{2}{5}\\y=-\frac{3}{7}\end{cases}}\)
b) \(\hept{\begin{cases}\left(x+0,7\right)^{84}\ge0\left(\forall x\right)\\\left(y-6,3\right)^{262}\ge0\left(\forall y\right)\end{cases}\Rightarrow}\left(x+0,7\right)^{84}+\left(y-6,3\right)^{262}\ge0\left(\forall x,y\right)\)
Kết hợp với đề bài, dấu "=" xảy ra khi:
\(\hept{\begin{cases}\left(x+0,7\right)^{84}=0\\\left(y-6,3\right)^{262}=0\end{cases}}\Rightarrow\hept{\begin{cases}x=-0,7\\y=6,3\end{cases}}\)
c) \(\hept{\begin{cases}\left(x-5\right)^{88}\ge0\left(\forall x\right)\\\left(x+y+3\right)^{496}\ge0\left(\forall x,y\right)\end{cases}\Rightarrow}\left(x-5\right)^{88}+\left(x+y+3\right)^{496}\ge0\left(\forall x,y\right)\)
Kết hợp với đề bài, dấu "=" xảy ra khi:
\(\hept{\begin{cases}\left(x-5\right)^{88}=0\\\left(x+y+3\right)^{496}=0\end{cases}}\Rightarrow\hept{\begin{cases}x=5\\y=-8\end{cases}}\)
Bài 2:
Theo giả thiết ta có thể suy ra: \(x>y\)
Ta có: \(2^x-2^y=224\)
\(\Leftrightarrow2^y\left(2^{x-y}-1\right)=224=32.7=2^5.7\)
Mà \(2^{x-y}-1\) luôn lẻ với mọi x,y nguyên
=> \(\hept{\begin{cases}2^{x-y}-1=7\\2^y=2^5\end{cases}\Leftrightarrow}\hept{\begin{cases}2^{x-y}=8=2^3\\y=5\end{cases}}\Leftrightarrow\hept{\begin{cases}x=8\\y=5\end{cases}}\)
Bài 1: (cách làm chung cho cả 3 câu a, b, c):
Những số có mũ chẵn (số mũ như 2010, 468, 84, 262, 88, 496,...) => Các số đó là bình phương của 1 số thực và đều >= 0.
Trong câu a, b, c của bài 1, ta thấy rằng tổng 2 số hạng <= 0. Mà 2 số hạng đó đều là bình phương của 1 số thực nên chúng >= 0.
=> Cả 2 số hạng đó đều có giá trị bằng 0. (do cùng >= 0 và <= 0).
Vậy các giá trị x, y cần tìm của câu 1 là: a) x = 2/5; y = -3/7; b) x = -0,7; y = 6,3; c) x = 5; y = -8.
Bài 2: x, y là số nguyên dương => 2^x, 2^y là số nguyên dương. Mà 2^x - 2^y = 224 > 0 => x > y.
Ta có: \(2^x-2^y=2^y.\left(2^{x-y}-1\right)\)
Lại có: \(224=7.2^5=\left(8-1\right).2^5=\left(2^3-1\right).2^5\)
=> 2^y = 2^5; 2^(x - y) = 2^3. => y = 5; x - y = 3. => x = 8; y = 5.
Vậy các giá trị x, y nguyên dương cần tìm là x = 8; y = 5.
Chúc bạn học tốt!
Bài 1: Tìm các số nguyên x,y biết:
(x-1)(y-7)=7
Bài 2:Tìm số nguyên x biết:
a) 8-lx+2l=5
b) lx+2l+2=-x
a) 8 - |x + 2| = 5
-|x + 2| = 5 - 8
-|x + 2| = -3
|x + 2| = 3
x + 2 = 3; -3
x + 2 = 3 hoặc x + 2 = -3
x = 3 - 2 x = -3 - 2
x = 1 x = -5
=> x = 1 hoặc x = -5
tìm x,y biết:
a) \(x^2+\left(y-\dfrac{1}{10}\right)^4=0\)
b) \(\left(\dfrac{1}{2}.x-5\right)^{20}+\left(y^2-\dfrac{1}{4}\right)^{10}\le0\)
a) \(x^2+\left(y-\dfrac{1}{10}\right)^4=0\)
\(\Leftrightarrow\left\{{}\begin{matrix}x=0\\y-\dfrac{1}{10}=0\end{matrix}\right.\)( do \(x^2\ge0,\left(y-\dfrac{1}{10}\right)^4\ge0\))
\(\Leftrightarrow\left\{{}\begin{matrix}x=0\\y=\dfrac{1}{10}\end{matrix}\right.\)
b) \(\left(\dfrac{1}{2}.x-5\right)^{20}+\left(y^2-\dfrac{1}{4}\right)^{10}\le0\)
\(\Leftrightarrow\left\{{}\begin{matrix}\dfrac{1}{2}x-5=0\\y^2-\dfrac{1}{4}=0\end{matrix}\right.\)( do \(\left(\dfrac{1}{2}x-5\right)^{20}\ge0,\left(y^2-\dfrac{1}{4}\right)^{10}\ge0\))
\(\Leftrightarrow\left\{{}\begin{matrix}\dfrac{1}{2}x=5\\y^2=\dfrac{1}{4}\end{matrix}\right.\)\(\Leftrightarrow\left\{{}\begin{matrix}x=10\\y=\pm\dfrac{1}{2}\end{matrix}\right.\)
\(a,\Leftrightarrow\left\{{}\begin{matrix}x=0\\y-\dfrac{1}{10}=0\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x=0\\y=\dfrac{1}{10}\end{matrix}\right.\\ b,\left\{{}\begin{matrix}\left(\dfrac{1}{2}x-5\right)^{20}\ge0\\\left(y^2-\dfrac{1}{4}\right)^{10}\ge0\end{matrix}\right.\Leftrightarrow\left(\dfrac{1}{2}x-5\right)^{20}+\left(y^2-\dfrac{1}{4}\right)^{10}\ge0\)
Mà \(\left(\dfrac{1}{2}x-5\right)^{20}+\left(y^2-\dfrac{1}{4}\right)^{10}\le0\)
\(\Leftrightarrow\left(\dfrac{1}{2}x-5\right)^{20}+\left(y^2-\dfrac{1}{4}\right)^{10}=0\\ \Leftrightarrow\left\{{}\begin{matrix}\dfrac{1}{2}x=5\\y^2=\dfrac{1}{4}\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x=10\\y=\pm\dfrac{1}{2}\end{matrix}\right.\)
a) \(x^2+\left(y-\dfrac{1}{10}\right)^4=0\)
Mà \(x^2+\left(y-\dfrac{1}{10}\right)^4\ge0\forall x;y\)
\(\Rightarrow\left\{{}\begin{matrix}x^2=0\\\left(y-\dfrac{1}{10}\right)^2=0\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x=0\\y=\dfrac{1}{10}\end{matrix}\right.\)
Vậy \(\left(x;y\right)=\left(0;\dfrac{1}{10}\right)\)
b) \(\left(\dfrac{1}{2}x-5\right)^{20}+\left(y^2-\dfrac{1}{4}\right)^{10}\le0\)
Mà \(\left(\dfrac{1}{2}x-5\right)^{20}+\left(y^2-\dfrac{1}{4}\right)^{10}\ge0\forall x;y\)
\(\Rightarrow\left(\dfrac{1}{2}x-5\right)^{20}+\left(y^2-\dfrac{1}{4}\right)^2=0\\ \Leftrightarrow\left\{{}\begin{matrix}\left(\dfrac{1}{2}x-5\right)^{20}=0\\\left(y^2-\dfrac{1}{4}\right)^{10}=0\end{matrix}\right.\\ \Leftrightarrow\left\{{}\begin{matrix}x=10\\\left[{}\begin{matrix}y=\dfrac{1}{2}\\y=-\dfrac{1}{2}\end{matrix}\right.\end{matrix}\right.\)
Vậy \(\left(x;y\right)\in\left\{\left(10;\dfrac{1}{2}\right);\left(10;-\dfrac{1}{2}\right)\right\}\)
Tìm x,y,z thuộc Q
a, \(|x+\frac{19}{5}|+|y+\frac{1890}{1975}|+|z+2004|\)
b, \(|x+\frac{9}{2}|+|y+\frac{4}{3}|+|z+\frac{7}{2}|\le0\)
c,\(|x+\frac{3}{4}|+|y-\frac{1}{5}|+|x+y+z|=0\)
d, \(|x+\frac{3}{4}|+|y-\frac{2}{5}|+|z+\frac{1}{2}|\le0\)
Tìm x,y biết :
a) \(\left|3.x-\dfrac{1}{2}\right|+\left|\dfrac{1}{4}.y+\dfrac{3}{5}\right|\)= 0
b)\(\left|\dfrac{3}{2}.x+\dfrac{1}{9}\right|+\left|\dfrac{5}{7}.y-\dfrac{1}{2}\right|\le0\)
a) \(\left|3x-\dfrac{1}{2}\right|+\left|\dfrac{1}{4}y+\dfrac{3}{5}\right|=0\)
Do \(\left|3x-\dfrac{1}{2}\right|,\left|\dfrac{1}{4}y+\dfrac{3}{5}\right|\ge0\forall x,y\)
\(\Rightarrow\left\{{}\begin{matrix}3x-\dfrac{1}{2}=0\\\dfrac{1}{4}y+\dfrac{3}{5}=0\end{matrix}\right.\)\(\Rightarrow\left\{{}\begin{matrix}x=\dfrac{1}{6}\\y=-\dfrac{12}{5}\end{matrix}\right.\)
b) \(\left|\dfrac{3}{2}x+\dfrac{1}{9}\right|+\left|\dfrac{5}{7}y-\dfrac{1}{2}\right|\le0\)
Do \(\left|\dfrac{3}{2}x+\dfrac{1}{9}\right|,\left|\dfrac{5}{7}y-\dfrac{1}{2}\right|\ge0\forall x,y\)
\(\Rightarrow\left\{{}\begin{matrix}\dfrac{3}{2}x+\dfrac{1}{9}=0\\\dfrac{5}{7}y-\dfrac{1}{2}=0\end{matrix}\right.\)\(\Rightarrow\left\{{}\begin{matrix}x=-\dfrac{2}{27}\\y=\dfrac{7}{10}\end{matrix}\right.\)
Tìm x,y biết
\(\left\{\frac{1}{2}.x-5\right\}^{10}+\left\{y^2-\frac{1}{4}\right\}^{20}\le0\)
Vì \(\left(\frac{1}{2}x-5\right)^{10}\ge0\)và \(\left(y^2-\frac{1}{4}\right)^{20}\ge0\)
nên \(\left(\frac{1}{2}x-5\right)^{10}+\left(y^2-\frac{1}{4}\right)^{20}=0\)
<=>\(\hept{\begin{cases}\frac{1}{2}x-5=0\\y^2-\frac{1}{4}=0\end{cases}}\)<=>\(\hept{\begin{cases}x=10\\y=\pm\frac{1}{2}\end{cases}}\)
Ta có:\(\hept{\begin{cases}\left\{\frac{1}{2}x-5\right\}^{10}\ge0\forall x\\\left\{y^2-\frac{1}{4}\right\}^{20}\ge0\forall y\end{cases}}\)
Mà \(\left\{\frac{1}{2}x-5\right\}^{10}+\left\{y^2-\frac{1}{4}\right\}^{20}\le0\)
\(\Rightarrow\left\{\frac{1}{2}x-5\right\}^{10}+\left\{y^2-\frac{1}{4}\right\}^{20}=0\)
\(\Leftrightarrow\hept{\begin{cases}\left\{\frac{1}{2}x-5\right\}^{10}=0\\\left\{y^2-\frac{1}{4}\right\}^{20}=0\end{cases}\Leftrightarrow\hept{\begin{cases}\frac{1}{2}x-5=0\\y^2-\frac{1}{4}=0\end{cases}\Leftrightarrow}\hept{\begin{cases}\frac{1}{2}x=5\\y^2=\frac{1}{4}\end{cases}\Leftrightarrow}\hept{\begin{cases}x=10\\y=\pm\frac{1}{2}\end{cases}}}\)
Vậy \(x=10;y=\pm\frac{1}{2}\)
Tìm x, y
\(\left(\frac{1}{2}x-5\right)^{20}+\left(y^2-\frac{1}{4}\right)^{10}\le0\)
Xét \(\left(\frac{1}{2}x-5\right)^{20}\ge0\)
\(\left(y^2-\frac{1}{4}\right)^{10}\ge0\)
\(\Rightarrow\) \(\left(\frac{1}{2}x-5\right)^{20}+\left(y^2-\frac{1}{4}\right)^{10}\ge0\)
mà \(\left(\frac{1}{2}x-5\right)^{20}+\left(y^2-\frac{1}{4}\right)^{10}=0\)
\(\Leftrightarrow\hept{\begin{cases}\frac{1}{2}x-5=0\\y^2-\frac{1}{4}=0\end{cases}}\)
\(\Rightarrow\hept{\begin{cases}\frac{1}{2}x=5\\y^2=\frac{1}{4}\end{cases}}\)
\(\Rightarrow\hept{\begin{cases}x=10\\y=\pm\frac{1}{2}\end{cases}}\)
x = 10
y = \(\frac{1}{2}\)
nha
..........................
Tìm x, y biết :
\(\left(\frac{1}{2}x-5\right)^{20}+\left(y^2-\frac{1}{4}\right)^{10}\le0\)
Tìm x , y thỏa mãn :
a) \(\frac{1}{2}\times(\frac{3}{4}x-\frac{1}{2})^{2018}+\frac{2017}{2018}\times/\frac{4}{5}y+\frac{6}{25}/\le0\)0
b) \(2017\times/2x-y/+2018\times(y-4)^{2017}\le0\)