Delta: 2x-3y+6=0. Tìm ảnh của delta qua 2 phép liên tiếp theo vecto AB và V(0,3) A(3;4) B(0;5)
Cho vecto v= (-2;1); d: 2x-3y+3=0 ; d1: 2x-3y-5=0
1) Viết phương trình d’= Tv(d)
2) Tìm toạ độ vecto w có phương vuông góc với d để d1= Tw(d)
Cho (d): 3x-y-9=0. Tìm phép tịnh tiến theo phương song song với trục Ox biến d thành d’ đi qua gốc toạ độ. Hãy viết phương trình d’.
Trong hệ trục toạ độ Oxy, cho parabol (P): y= \(ax^2\)Gọi T là phép tịnh tiến theo vecto u=(m;n) và (P’) là ảnh của (P) qua phép tịnh tiến đó. Hãy viết phương trình của (P’).
Cho đường thẳng \(\Delta\): 6x+2y-1=0. Tìm vecto u \(\ne\)vecto 0 để \(\Delta=\)Tu(\(\Delta\))
Trong mặt phẳng Oxy, chi vecto \(\overrightarrow{v}\)=(-3;2) và dường thẳng Δ:x-3y+6=0. Viết phương trình mặt phẳng Δ’ là hình ảnh của đường thẳng Δ qua phép tịnh tiến theo vecto \(\overrightarrow{v}\)
Ý bạn là phương trình đường thẳng?
Gọi \(M\left(x;y\right)\) là điểm thuộc \(\Delta\) và \(M'\left(x';y'\right)\) là ảnh của M qua phép tịnh tiến \(\overrightarrow{v}\Rightarrow\left\{{}\begin{matrix}x'=x-3\\y'=y+2\end{matrix}\right.\) \(\Rightarrow\left\{{}\begin{matrix}x=x'+3\\y=y'-2\end{matrix}\right.\)
\(\Rightarrow\left(x'+3\right)-3\left(y'-2\right)+6=0\)
\(\Leftrightarrow x'-3y'+15=0\)
Vậy phương trình \(\Delta':\) \(x-3y+15=0\)
Tìm ảnh của đường thẳng d : 2 x + 3 y − 2 = 0 qua phép tịnh tiến theo vecto v → = 2 ; 3 là
A. 2 x + 3 y + 15 = 0
B. 2 x − 3 y + 15 = 0
C. 2 x − 3 y − 15 = 0
D. 2 x + 3 y − 15 = 0
Bài 1: Trong mặt phẳng Oxy, cho đường thẳng \(d:2x-3y+4=0\) và điểm \(A(3;-1)\).Tìm tọa độ vecto \(\overrightarrow{v}\) có giá vuông góc với d biết phép tịnh tiến theo vecto \(\overrightarrow{v}\) biến đường thẳng d thành đường thẳng \(\Delta\) đi qua điểm A.
Bài 2: Tính tổng các nghiệm thuộc khoảng \(\left(0;2022\pi\right)\) của phương trình
\(\left(sinx+cosx\right)^2+2sin^2\dfrac{x}{2}=sinx\left(2\sqrt{3}sinx+4-\sqrt{3}\right)\)
Cho ∆: 2x-y=0. Ảnh của đường thẳng ∆ qua phép dời hình bằng cách thực hiện liên tiếp phép quay tâm O, góc -90° phép tịnh tiến theo vecto v=(3;-2). ∆'=?
a) cho d: 2x-3y+12=0. Tìm ảnh của d qua phép tịnh tiến theo v = (4; -3) b) cho d : 2x+y-4=0 và A (3;1) ;B (-1;8) . Tìm ảnh d' của d qua phép tịnh tiến theo AB->
a, Gọi M(3 ; 6) ∈ d. Gọi \(T_{\overrightarrow{v}}\left(M\right)=M'\)
⇒ \(\overrightarrow{MM'}=\overrightarrow{v}=\left(4;-3\right)\)
⇒ M' (7 ; 3)
\(T_{\overrightarrow{v}}\left(d\right)=d'\) ⇒ d' // d và d' đi qua M' (7 ; 3)
⇒ d' : 2x - 3y - 5 = 0
b, làm tương tự
trong mặt phẳng Oxy cho đường thẳng delta x-2y+2=0. Ảnh của đường thẳng delta qua phép tịnh tiến theo vecto u=(2;3)
Trong mặt phẳng hệ trục tọa độ Oxy, cho điểm I(2;1), \(\overrightarrow{v}=\left(1;1\right)\) và đường thẳng \(\Delta:x+2y-3=0\). Tìm phương trình đường thẳng \(\Delta'\) là ảnh của \(\Delta\) qua phép dời hình có được bằng cách thực hiện liên tiếp \(T_{\overrightarrow{v}}\) và \(Q_{\left(O,90^o\right)}\)
Trong mp Oxy cho \(\overrightarrow{v}\left(1;2\right)\), d: x - 3y + 6 = 0. Tìm ảnh của d qua phép dời hình có được bằng cách thực hiện liên tiếp phép tịnh tiến theo \(\overrightarrow{v}\) và phép quay tâm O góc \(\dfrac{-\pi}{2}\)
trong mặt phẳng tọa độ Oxy cho vecto u= (3,1) và đường thẳng d :2x- y=0 .Tìm phương trình đường thẳng d' là ảnh của đường thẳng d qua phép dời hình có được bằng cách thực hiện liên tiếp phép quay Q (O; 90° ) và phép tịnh tiến theo vecto u ?