Cho x,y,z thỏa mãn 3x/4 = y/2 = 3z/2 và y – z = 15. Tìm x,y,z
Cho x,y,z thỏa mãn 3x/4 = y/2 = 3z/5 và y – z = 15. Tìm x,y,z
\(\frac{3x}{4}=\frac{y}{2}=\frac{3z}{5}\Rightarrow\frac{x}{\frac{4}{3}}=\frac{y}{2}=\frac{z}{\frac{5}{3}}\)
Áp dụng TC DTSBN ta có :
\(\frac{x}{\frac{4}{3}}=\frac{y}{2}=\frac{z}{\frac{5}{3}}=\frac{y-z}{2-\frac{5}{3}}=\frac{15}{\frac{1}{3}}=45\)
\(\Rightarrow\frac{x}{\frac{4}{3}}=45\Rightarrow x=45.\frac{4}{3}=60\)
\(\Rightarrow\frac{y}{2}=45\Rightarrow y=45.2=90\)
\(\Rightarrow\frac{z}{\frac{5}{3}}=45\Rightarrow z=45.\frac{5}{3}=75\)
Vậy x = 60; y = 90 ; z = 75
Cho x,y,z thỏa mãn\(\frac{3x}{4}\)=\(\frac{y}{2}\)=\(\frac{3z}{5}\)và y-x =15. Tìm x,y,z
Cho 3 số hữu tỉ x, y, z thỏa mãn với xyz(3x + y + z)(3y + z + x)(3z + x + y) \(\neq\) 0 thỏa mãn điều kiện \(\dfrac{x}{y+z+3x}=\dfrac{y}{z+x+3y}=\dfrac{z}{x+y+3z}\). Tính giá trị biểu thức:
A = \(\left(2+\dfrac{y+z}{x}\right)\left(2+\dfrac{z+x}{y}\right)\left(2+\dfrac{x+y}{z}\right)\)
Xét \(x+y+z=0\)
\(\Leftrightarrow\left\{{}\begin{matrix}y+z=-x\\z+x=-y\\x+y=-z\end{matrix}\right.\)
\(\Rightarrow A=\left(2-1\right)\left(2-1\right)\left(2-1\right)=1\)
Xét \(x+y+z\ne0\) thì ta có:
\(\dfrac{x}{y+z+3x}=\dfrac{y}{z+x+3y}=\dfrac{z}{x+y+3z}=\dfrac{x+y+z}{5x+5y+5z}=\dfrac{x+y+z}{5\left(x+y+z\right)}=\dfrac{1}{5}\)
\(\Rightarrow\left\{{}\begin{matrix}5x=y+z+3x\\5y=z+x+3y\\5z=x+y+3z\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}2x=y+z\\2y=z+x\\2z=x+y\end{matrix}\right.\)
\(\Rightarrow A=\left(2+2\right)\left(2+2\right)\left(2+2\right)=64\)
Vậy \(\left[{}\begin{matrix}A=1\\A=64\end{matrix}\right.\)
Nếu bị lỗi thì bạn có thể xem đây nhé:
Cho x, y, z thỏa mãn: x/2= 2y/3= 3z/4 và x-y=15. Khi đó x+y+z=?
Cho x, y, z thỏa mãn: x/2= 2y/3= 3z/4 và x-y=15. Khi đó x+y+z=?
Lời giải:
Áp dụng tính chất dãy tỉ số bằng nhau:
$\frac{x}{2}=\frac{2y}{3}=\frac{y}{1,5}=\frac{3z}{4}=\frac{x-y}{2-1,5}=\frac{15}{0,5}=30$
$\Rightarrow x=30.2=60; y=30.1,5=45; z=30.4:3=40$
$\Rightarrow x+y+z=60+45+40=145$
Cho x, y, z thỏa mãn: x/2= 2y/3= 3z/4 và x-y=15. Khi đó x+y+z=?
Tìm x,y,z thỏa mãn hệ sau:
\(\left\{{}\begin{matrix}x^3-3x-2=2-y\\y^3-3y-2=4-2z\\z^3-3z-2=6-3x\end{matrix}\right.\)
Cho x;y;z thõa mãn: \(\frac{3x}{4}=\frac{y}{2}=\frac{3z}{5}\)và y-z =15. giá trị x+y+z=...
Ta có: \(\frac{3x}{4}\)= \(\frac{y}{2}\)= \(\frac{3z}{5}\)
=> \(\frac{1}{3}.\frac{3x}{4}=\frac{1}{3}.\frac{y}{2}=\frac{1}{3}.\frac{3z}{5}\)
\(\Rightarrow\frac{3x}{12}=\frac{y}{6}=\frac{3z}{15}\)
\(\Rightarrow\frac{x}{4}=\frac{y}{6}=\frac{z}{5}\)
Áp dụng tính chất dãy tỉ số bằng nhau ta có:
\(\frac{x}{4}=\frac{y}{6}=\frac{z}{5}=\frac{y-z}{6-5}=15\)
Suy ra:
x = 15.4=60y=15.6=90z=15.5=75\(\Rightarrow\)x + y + z = 225
Tìm x,y,z thỏa mãn hệ sau:
x3-3x-2=2-y
y3-3y-2=4-z
z3-3z-2=6-3x