Cho A = 3+3^2+3^3+...+3^100 Tìm số tự nhiên n , biết 2A +3=3^n .
Cho A=3+3^2+3^3+...+3^100. Tìm số tự nhiên n biết rằng 2A+3= 3^n
Ta có: 3A=32+33+...+3101
3A-A=2A=(32+33+...+3101)-(3+32+...+3100)
2A=3101-3
A=\(\frac{3^{101}-3}{2}\)
=>2A+3=2.\(\frac{3^{101}-3}{2}\)+3
=(3101-3)+3
=3101
Mà 2A+3=3n
=>3101=3n
=>n=101
A=3+32+33+...+3100
2A=(3+32+33+...+3100)x2
2A=32+33+34...+3101
2A-A=3101-3
mà 3n=2A+3=3101-3+3=3101
suy ra n=101
Ta có : A = 3 + 32 + 33 + ... + 3100
3A = 32+33+34+...+3101
Vậy 2A = 3101 - 3
Vậy 2A + 3 = 3101
=> x = 101
cho A=3+3^2+3^3+..................+3^100
Tìm số tự nhiên n biết 2A+3=3^n
Ta có \(A=3+3^2+3^3+...+3^{100}\)
\(\Rightarrow3A=3^2+3^3+3^4+...+3^{101}\)
\(\Rightarrow3A-A=3^{101}-3\)
\(2A=3^{101}-3\)
Ta có \(2A+3=3^n\)
hay \(3^{101}-3+3=3^n\)
\(3^{101}=3^n\)
\(n=101\)
A=3+32+33+.....+3100
3a=3.(3+32+33+....+3100)
3A=32+33+34+....+3101
3A-A=(32+33+34+....+3101)-(3+32+33+.....+3100)
2A=3101-3
2A+3=3101-3+3
2A+3=3101
3n=3101
=>n\(\in\)(101)
Chúc bn học tốt
Cho A = 3+3^2+3^3+3^4+...+3^100
Tìm số tự nhiên n, biết 2A + 3 = 3^n
A=\(3+3^2+3^3+...+3^{100}\)
3A=\(3^2+3^3+3^4+...+3^{101}\)
3A - A=\(3^2+3^3+3^4+...+3^{101}-3-3^2-3^3-...-3^{100}\)
2A = \(3^{101}-3\)
=>\(2A+3=3^n\)
=>\(3^{101}-3+3=3^n\)
=>3\(^{101}=3^n\)
=>n=101
Cho $A = 3 + 3^2 + 3^3 + ... +3^{100}$.
Tìm số tự nhiên $n$, biết rằng $2A + 3 = 3^n$.
có A=3+3^2+3^3+..+3^100
3A=3.3+3^2.3+3^3.3+..+3^100.3
3A=3^2+3^3+3^4+..+3^101
⇒2A=(3^2+3^3+3^4+..+3^101)-(3+3^2+3^3+..+3^100)
2A=3^101-3
LẤY 3^101-3+3=3^n
3^101=3^n
⇒n=101
Ta có (1)
(2)
Lấy (2) trừ (1) được .
Do đó,
Mà theo đề bài .
Vậy .
Ta có A=3+32+33+...+3100A=3+32+33+...+3100 (1)
3A=32+33+...+3100+31013A=32+33+...+3100+3101 (2)
Lấy (2) trừ (1) được 2A=3101−32A=3101−3.
Do đó, 2A+3=31012A+3=3101
Mà theo đề bài 2A+3=3n2A+3=3n.
Vậy n=101n=101.
Cho A= 3+3^2+3^3+3^4+...+3^100
Tìm số tự nhiên N, biết rằng 2A+3=3^N
=>3A=32+32+…+3101
=>3A-A=32+33+…+3101-3-32-…-3100
=>2A=3101-3
=>2A+3=3101=3N
=>N=101
Vậy N=101
3A = \(3^2+3^3+3^4+...+3^{100}+3^{101}\)
\(\Rightarrow3A-A=\left(3^2+3^3+3^4+...+3^{100}+3^{101}\right)\)- \(\left(3+3^2+3^3+..+3^{100}\right)\)
\(\Rightarrow2A=3^{101}-3\Rightarrow2A+3=3^{101}\)
Vậy n = 101
3A=32+33+34+35+......+3101
3A-A=(32+33+34+35+.....+3101) - (3+32+33+34+.....+3100)
2A=3101-3
2A+3=3101-3+3
2A+3=3101
Mà theo đề bài thì 2A+3=3n suy ra n=101
cho A= 3+ 3 mũ 2 + 3 mũ 3+..........+3 mũ 100
tìm n là số tự nhiên biết 2A + 3 = 3 mũ n
em tính 3A đi
sao đok e lấy 3A-A là đc 2A
tiếp theo chéc e cx bik lm rồi nhỉ, tự lm cho quẹn
A=3+3^2+3^3+........+3^100
3A=3^2+3^3+........+3^101
3A-A=(3^2+3^3+........+3^101)-(3+3^2+3^3+........+3^100)
2A=3^101-3
suy ra: n=3^101-3+3=3^101
**** cho chị nhé! (bài này dễ, em cố gắng luyện nhìu nhé, lm hoài sẽ cok nhìu dạng nâng cao khó hơn)
Mần^o^
Cho A=3+32+33+..........+3100.Tìm số tự nhiên n,biết 2A+3=3n
A = 3 + 32 + 33 + ... + 3100
3A = 32 + 33 + 34 + ... + 3101
3A - A = 3101 - 3
2A = 3101 - 3
Ta có:
2A + 3 = 3n
3101 - 3 +3 = 3n
3101 = 3n
=> n = 101
Vậy n = 101
cho A = 3+3^2+3^3 +..........+3^100
tìm số tự nhiên n biết
2A+3=3n
\(A=3+3^2+3^3+...+3^{100}\)
\(3A=3^2+3^3+...+3^{100}+3^{101}\)
\(3A-A=3^2+3^3+...+3^{100}+3^{101}-\left(3+3^2+3^3+...+3^{100}\right)\)
\(2A=3^{101}-3\)
\(2A+3=3n\)
\(\Rightarrow3^{101}-3+3=3n\)
\(\Rightarrow3^{101}=3n\)
\(\Rightarrow n=3^{100}\)
Ta có A= 3+3^2+3^3+...+3^100
3A= 3^2+3^3+3^4+...+3^101
3A-A=(3^2+3^3+3^4+...+3^101)-(3+3^2+3^3+...+3^100)
2A= 3^101 - 3
Ta lại có 2A+3=3^101-3+3
= 3^101
=> 3n=3^101
=> n= 3^101:3
=> n= 3^100
Vậy n= 3^100
cho A = 3+3^2+3^3 +..........+3^100
tìm số tự nhiên n biết
2A+3=3A
A=3+3^2+3^3+...+3^100
=>3A=3^2+3^3+3^4+...+3^101
=>3A-A=2A=3^101-3
mà 2A+3=3^n
=>3^101-3+3=3^n
=>3^n=3^101
=>n=101
cho A = 3+3^2+3^3 +..........+3^100
tìm số tự nhiên n biết
2A+3=3n
3A = 3^2 + 3^3 + 3^4 + ... + 3^100 + 3^ 101
=> 3A - A = (3^2 + 3^3 + 3^4 + ... + 3^100 + 3^ 101) - (3 + 3^2 + 3^3 + 3^4 + ... + 3^100 )
=> 2A = 3^101 - 3 => 2A + 3 = 3^101 vậy n = 101