2z^4+z^3-6z^2+z+2=0 Tìm z
theo định lí đi dép tổ ong thì 2 trong 3 số x-2;y-2;z-2 cùng dấu
giả sử \(\left(x-2\right)\left(y-2\right)\ge0\Leftrightarrow xy-2\left(x+y\right)+4\ge0\)
\(\Leftrightarrow xy-2\left(6-z\right)+4\ge0\)
<=>xy-8+2z>(=)0
<=>xyz+2z^2-8z>(=)0
<=>xyz>(=)8z-2z^2
\(x^2-xy+y^2\ge\frac{x^2+y^2}{2}\ge\frac{\left(x+y\right)^2}{4}=\frac{\left(6-z\right)^2}{4}=\frac{z^2}{4}-3z+9\)
xz+yz=z(x+y)=x(6-z)=6z-z2
\(\Rightarrow x^2+y^2+z^2-xy-yz-zx+xyz\ge\frac{z^2}{4}-3z+9+z^2+z^2-6z+8z-z^2=\frac{z^2}{4}-z+9=\left(\frac{z}{2}-1\right)^2+8\ge8\)
tìm các số nguyên z, biết:
6z - 5 chia hết cho 2z+ 2
3 - z chia hết cho z - 5
t
giải hệ pt 3 ẩn y^3+3Y^2=x^2-3X+2 ; (z-x)(3x-2z)=3-z ; z^2+y^2=6z và z < hoăc= 3
Cho x,y,z thỏa mãn \(x^2+y^2+z^2-2x-4y+6z\le2\). Tìm GTNN và GTLN của
\(P=x+2y-2z\)
Cho em hỏi câu này làm thế nào ạ.
a, Cho pt: Z3 - (4+i)Z2 + (3+8i) Z-15i = 0 có 3 nghiệm z1, z2,z3 tìm \(\left|z_1\right|^2+\left|z_2\right|^2+\left|z_3\right|^2\)
b, Z4-Z3-2Z2+6Z-4 =0 có 4 nghiệm Z1,Z2,Z3,Z4
Tổng \(\dfrac{1}{z_1^2}+\dfrac{1}{z_2^2}+\dfrac{1}{z_3^2}+\dfrac{1}{z_4^2}\)
1. x/2=x/3;y/5=z/7 và x+y+z=92
2. x=y/2=z/3 và 4x-3y-2z=36
3. 2x=3y=5z và x+y-z=95
4. 2/3x=1/5y=5/6z và x-y+z=46
1.
\(\frac{x}{2}=\frac{y}{3}=>\frac{x}{10}=\frac{y}{15}\)
\(\frac{y}{5}=\frac{z}{7}=>\frac{y}{15}=\frac{z}{21}\)
=>\(\frac{x}{10}=\frac{y}{15}=\frac{z}{21}=\frac{x+y+z}{10+15+21}=\frac{92}{46}=2\)
=> x=2x10=20
y=2x15=30
z=2x21=42
2.
\(\frac{x}{1}=\frac{y}{2}=\frac{z}{3}=\frac{4x-3y-2z}{4-6-6}=\frac{36}{-8}=-\frac{9}{2}\)
=> x=\(-\frac{9}{2}x1=-\frac{9}{2}\)
y=\(-\frac{9}{2}x2=-9\)
z=\(-\frac{9}{2}x3=-\frac{27}{2}\)
3. \(2x=3y=5z\Rightarrow\frac{2x}{30}=\frac{3y}{30}=\frac{5z}{30}\Rightarrow\frac{x}{15}=\frac{y}{10}=\frac{z}{6}=\frac{x+y-z}{15+10-6}=\frac{95}{19}\)
=> x=95/19x15=....
y=95/19x10=...
z=96/19x6=...
Cho x, y, z thỏa mãn:
x2+2y2+2z2+2xy+2zx-2x+2y-6z+5=0.
Tìm Min A=x2+y2+z2
Cho x,y,z >0 / x^2 +y^2 +z^3 =3.,
Tìm max P= x/ (x^2 +2y+3) + y/(y^2 +2z+3) +z/(z^2 + 2x +3)
tìm x, y, z biết x^2+y^2+z^2-xy-3y-2z+4=0
Thu gọn và tính giá trị biểu thức
a) A= 3x^4 + 1/3xyz - 3x^4 - 4/3xyz + 2x^2y - 6z khi x=1; y=3 và z=1/3
b) B= 4x^3 - 2/7xyz - 4x^3 - 4/3xyz + 4x^2y khi x=-1; y=2 và z=-1/2
c) C= 4x^2 + 1/2xyz - 2/3xy^2z - 5x^2yz + 3/4xyz khi x=-1; /y/=2 và z=1/2
`#3107`
`a)`
`A=`\(3x^4 + \dfrac{1}3xyz - 3x^4 - \dfrac{4}3xyz + 2x^2y - 6z\)
`= (3x^4 - 3x^4) + (1/3xyz - 4/3xyz) + 2x^2y - 6z`
`= -xyz + 2x^2y - 6z`
Thay `x = 1; y = 3` và `z = 1/3` vào A
`A = -1*3*1/3 + 2*1^2*3 - 6*1/3`
`= -1 + 6 - 2`
`= 6 - 3`
`= 3`
Vậy, `A=3`
`b)`
`B=`\(4x^3 - \dfrac{2}7xyz - 4x^3 - \dfrac{4}3xyz + 4x^2y\)
`= (4x^3 - 4x^3) + (-2/7xyz - 4/3xyz) + 4x^2y`
`= -34/21 xyz + 4x^2y`
Thay `x = -1; y = 2` và `z = -1/2` vào B
`B = -34/21*(-1)*2*(-1/2) + 4*(-1)^2 * 2`
`= -34/21 + 8`
`= 134/21`
Vậy, `B = 134/21`
`c)`
`C=`\(4x^2 + \dfrac{1}2xyz - \dfrac{2}3xy^2z - 5x^2yz + \dfrac{3}4xyz\)
`= 4x^2 + (1/2xyz + 3/4xyz) - 2/3xy^2z - 5x^2yz `
`= 4x^2 + 5/4xyz - 2/3xy^2z - 5x^2yz`
Ta có:
`|y| = 2`
`=> y = +-2`
Thay `x = -1; y = 2` và `z = 1/2` vào C
`4*(-1)^2 + 5/4*(-1)*2*1/2 - 2/3*(-1)*2^2*1/2 - 5*(-1)^2*2*1/2`
`= 4 - 5/4 + 4/3 - 5`
`= -11/12`
Vậy, với `x = -1; y = 2; z = 1/2` thì `B = -11/12`
Thay `x = -1; y = -2; z = 1/2`
`B = 4*(-1)^2 + 5/4*(-1)*(-2)*1/2 - 2/3*(-1)*(-2)^2*1/2 - 5*(-1)^2*(-2)*1/2`
`= 4 + 5/4 + 4/3 + 5`
`= 139/12`
Vậy, với `x = -1; y = -2; z = 1/2` thì `B = 139/12.`