(n+2021) . ( n+2024 ) ⋮ 2
Cho em xin hỏi bài toán này ạ! Em xin cảm ơn !
1/2021×2022+1/2022×2023+1/2023×2024+1/2024×2025-4/2021×2025=
A = \(\dfrac{1}{2021.2022}\) + \(\dfrac{1}{2022.2023}\) + \(\dfrac{1}{2023.2024}\) + \(\dfrac{1}{2024.2025}\) - \(\dfrac{4}{2021.2025}\)
A = \(\dfrac{1}{2021}\) - \(\dfrac{1}{2022}\) + \(\dfrac{1}{2022}\) - \(\dfrac{1}{2023}\) + \(\dfrac{1}{2023}\) - \(\dfrac{1}{2024}\) + \(\dfrac{1}{2024}\) - \(\dfrac{1}{2025}\) - \(\dfrac{1}{2021}\) + \(\dfrac{1}{2025}\)
A = (\(\dfrac{1}{2021}\) - \(\dfrac{1}{2021}\)) + (\(\dfrac{1}{2022}\) - \(\dfrac{1}{2022}\)) + (\(\dfrac{1}{2023}\) - \(\dfrac{1}{2023}\)) + (\(\dfrac{1}{2024}\) - \(\dfrac{1}{2024}\)) + (\(\dfrac{1}{2025}\) - \(\dfrac{1}{2025}\))
A = 0 + 0 +0 + 0+ ... + 0
A = 0
a: \(B=\dfrac{154}{155+156}+\dfrac{155}{155+156}\)
\(\dfrac{154}{155}>\dfrac{154}{155+156}\)
\(\dfrac{155}{156}>\dfrac{155}{155+156}\)
=>154/155+155/156>(154+155)/(155+156)
=>A>B
b: \(C=\dfrac{2021+2022+2023}{2022+2023+2024}=\dfrac{2021}{6069}+\dfrac{2022}{6069}+\dfrac{2023}{6069}\)
2021/2022>2021/6069
2022/2023>2022/2069
2023/2024>2023/6069
=>D>C
\(P\left(x\right)\)=\(x^{2023}-2024.x^{2022}+2024.x^{2021}-2024.x^{2020}+.....+2024.x-1\)
tính P ( 2023)
Giải nhanh giúp mik ạ !! đang cânf gấp O(∩_∩)O
Với x = 2023
<=> x + 1 = 2024
Khi đó P(2023) = x2023 - (x + 1).x2022 + ... + (x + 1).x - 1
= x2023 - x2023 - x2022 + .. + x2 + x - 1
= x - 1 = 2023 - 1 = 2022
Câu 6. Giá trị nhỏ nhất của biểu thức A = (x – y)2 + (x – 1)2 + (y + 2)2 + 2021 là
A. 2021 B. 2022 C. 2023 D. 2024
Dẫu '' = '' xảy ra khi và chỉ khi ( x - y )2 + (x – 1)2 + (y + 2)2 = 0
1) Tính hợp lý :
P=1-2-3+4+5-6-7+8+.........+2021-2022-2023+2024
P=[(1-2)+(-3+4)+(5-6)+(-7+8)+...+(993-994)+(-995+996)]+997
P=[(-1)+1+(-1)+1+...+(-1)+1+(-1)+1]+997
P= 0 +0 +...+ 0 +997
P=997
So sánh : \(A=\dfrac{8^{2021}+2}{8^{2022}+2}\) với \(B=\dfrac{8^{2023}+2}{8^{2024}+2}\)
Giúp với
\(8A=\dfrac{8^{2022}+16}{8^{2022}+2}=1+\dfrac{14}{8^{2022}+2}\)
\(8B=\dfrac{8^{2024}+16}{8^{2024}+2}=1+\dfrac{14}{8^{2024}+2}\)
Vì \(\dfrac{14}{8^{2022}+2}>\dfrac{14}{8^{2024}+2}\)
=> 8A>8B
=> A>B
Tính A = 7 mũ 2024 - 7 mũ 2023 + 7 mũ 2022 - 7 mũ 2021 + ... + 7 mũ 2 - 7
\(A=7^{2024}-7^{2023}+7^{2022}-7^{2021}+...+7^2-7\)
=>\(7A=7^{2025}-7^{2024}+7^{2023}-7^{2022}+...+7^3-7^2\)
=>\(7A+A=7^{2025}-7^{2024}+7^{2023}-7^{2022}+...+7^3-7^2+7^{2024}-7^{2023}+...+7^2-7\)
=>\(8A=7^{2025}-7\)
=>\(A=\dfrac{7^{2025}-7}{8}\)
So sánh:
A=3^2021-2/3^2024+5 và B=3^2020-2/3^2019+5
Làm chi tiết nha mn
không quy đồng so sánh 2 phân số 2020/2323 và 2021/2024
giúp mk với mk đang vội
Hôm nay olm.vn sẽ hướng dẫn em giải dạng toán nâng cao so sánh phân số bằng phân số trung gian, cấu trúc đề thi hsg và thi chuyên em nhé.
Kiến thức cần nhớ:
Khi tử số một nhỏ hơn tử số hai và mẫu số một lớn hơn mẫu số hai thì ta dùng phân số trung gian.
\(\dfrac{2020}{2323}\) < \(\dfrac{2021}{2323}\) < \(\dfrac{2021}{2024}\)
Vậy : \(\dfrac{2020}{2323}\) < \(\dfrac{2021}{2024}\)