Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
Kiệt Nguyễn
Xem chi tiết
Vy Thị Hoàng Lan ( Toán...
12 tháng 7 2019 lúc 8:51

a, mệnh đề đúng 

b, mệnh đề sai 

c, mệnh đề đúng 

Quoc Tran Anh Le
Xem chi tiết
Nguyễn Lê Phước Thịnh
16 tháng 9 2023 lúc 21:18

a: 1/2; 2/3

b: \(\sqrt{2};\sqrt{3}\)

Hà Quang Minh
16 tháng 9 2023 lúc 21:19

a) \(\frac{3}{8}; - 0,2\) là các số hữu tỉ

b) \( - \sqrt 3 ;\pi \) là các số vô tỉ

qưertyui
30 tháng 11 2023 lúc 12:40

a 6/3 8/2

b 0,9122111111... 0,1275544...

Rùa Con Chậm Chạp
Xem chi tiết
Trần Thanh Phương
4 tháng 11 2018 lúc 16:02

Bài 2 :

Giả sử \(a=\sqrt{3}\)là số hữu tỉ

Khi đó ta có \(a=\sqrt{3}=\frac{m}{n}\)với m, n tối giản ( n khác 0 )

Từ \(\sqrt{3}=\frac{m}{n}\Rightarrow m=\sqrt{3}n\)

Bình phương 2 vế ta được đẳng thức: \(m^2=3n^2\)(*)

\(\Rightarrow m^2⋮3\)mà m tối giản \(\Rightarrow m⋮3\)

=> m có dạng \(3k\)

Thay m vào (*) ta có : \(9k^2=3n^2\)

\(\Leftrightarrow3k^2=n^2\)

\(\Leftrightarrow n=\sqrt{3}k\)

Vì k là số nguyên => n không là số nguyên

=> điều giả sử là sai

=> \(\sqrt{3}\)là số vô tỉ

Nguyên
Xem chi tiết
Thanh Tùng DZ
19 tháng 4 2020 lúc 16:30

giả sử \(\sqrt{1+\sqrt{2}}=m\) ( m là số hữu tỉ )

\(\Rightarrow\sqrt{2}=m^2-1\)nên \(\sqrt{2}\)là số hữu tỉ ( vô lí )

vậy ...

b) giả sử \(m+\frac{\sqrt{3}}{n}=a\)( a là số hữu tỉ ) thì \(\frac{\sqrt{3}}{n}=a-m\Rightarrow\sqrt{3}=n\left(a-m\right)\)nên là số hữu tỉ ( vô lí )

vậy ....

Khách vãng lai đã xóa
Cao Đỗ Thiên An
Xem chi tiết
Trần Bảo Như
20 tháng 7 2018 lúc 9:22

a, Giả sử \(\sqrt{6}\) là số hữu tỉ

\(\Rightarrow\) \(\sqrt{6}\)viết được dưới dạng phân số tối giản \(\frac{a}{b}\)\(\Rightarrow\) \(\sqrt{6}\)\(\frac{a}{b}\)\(\Leftrightarrow\) (\(\sqrt{6}\))= (\(\frac{a}{b}\)) \(\Leftrightarrow\) a2 = 6b2 mà (a, b) = 1 \(\Rightarrow\) a2 chia hết cho 6 mà (6, 1) = 1 \(\Rightarrow\) a chia hết cho 6 (1)

Đặt a = 6k \(\Rightarrow\) a2 = 36k2 và a = 6b\(\Rightarrow\) 36k2 = 6b2 \(\Leftrightarrow\) b= 6k2 mà (6, 1) = 1 \(\Rightarrow\) b2 chia hết cho 6 \(\Rightarrow\) b chia hết cho 6 (2)

Từ (1), (2) và \(\frac{a}{b}\)là phân số tối giản \(\Rightarrow\) Trái với giả thiết (a, b) = 1.

Vậy \(\sqrt{6}\)là số vô tỉ.

b, Giả sử \(\sqrt{1+\sqrt{2}}\)là số hữu tỉ, đặt \(\sqrt{1+\sqrt{2}}\)= a

Ta có: a2 = (\(\sqrt{1+\sqrt{2}}\))2 = 1 + \(\sqrt{2}\)\(\Leftrightarrow\) a2 - 1 = \(\sqrt{2}\)

Ta có: a2 - 1 là số hữu tỉ mà \(\sqrt{2}\)là số vô tỉ \(\Rightarrow\) vô lí

Vậy \(\sqrt{1+\sqrt{2}}\)là số vô tỉ

vuong hien duc
Xem chi tiết
Phùng Minh Quân
17 tháng 10 2018 lúc 7:13

Đề thiếu điều kiện n là số tự nhiên nhé 

\(a)\)\(\sqrt{1+2+3+4+...+\left(n-1\right)+n+\left(n-2\right)+...+3+2+1}\)

\(=\)\(\sqrt{\frac{n\left(n-1\right)}{2}+n+\frac{n\left(n-1\right)}{2}}\)

\(=\)\(\sqrt{\frac{2n\left(n-1\right)}{2}+n}\)

\(=\)\(\sqrt{n\left(n-1\right)+n}\)

\(=\)\(\sqrt{n\left(n-1+1\right)}\)

\(=\)\(\sqrt{n^2}\)

\(=\)\(\left|n\right|\)

Mà n là số tự nhiên nên \(n\ge0\)\(\Rightarrow\)\(\left|n\right|=n\)

Vậy \(\sqrt{1+2+3+4+...+\left(n-1\right)+n+\left(n-1\right)+...+3+2+1}=n\) ( đpcm ) 

Chúc bạn học tốt ~ 

Thảo Lê Thị
Xem chi tiết
Đinh Thị Thùy Trang
Xem chi tiết
Ngô Chi Lan
9 tháng 8 2020 lúc 21:10

Bài làm:

a) Vì 1 là số hữu tỉ, \(\sqrt{2}\) là số vô tỉ

=> \(1+\sqrt{2}\) vô tỉ

\(\Rightarrow\sqrt{1+\sqrt{2}}\) vô tỉ

b) Vì n là số hữu tỉ, \(\sqrt{3}\) vô tỉ

=> \(\frac{\sqrt{3}}{n}\) vô tỉ, mà m hữu tỉ

=> \(m+\frac{\sqrt{3}}{n}\) vô tỉ

Khách vãng lai đã xóa
Yim Yim
Xem chi tiết
Le Nhat Phuong
1 tháng 9 2017 lúc 20:18

Bn tham khảo nè: 

 giả sử x + y = a với a là số hữu tỉ 
=> y = a - x 
mà a và x là hữu tỉ nên a - x cũng hữu tỉ 
(dễ dàng chứng minh điểu này bằng cách đặt a = p/q và x = m/n) 
=> y cũng hữu tỉ 
vô lý