1,Chứng minh:
a, \(\sqrt{8}\) là số hữu tỉ
b, \(\sqrt{8}\)là số vô tỉ
Mệnh đề sau là mệnh đề gì
a) 8 là số nguyên tố
b) \(\sqrt{2}\)là số hữu tỉ
c) \(5-\sqrt{2}\)là số vô tỉ
a, mệnh đề đúng
b, mệnh đề sai
c, mệnh đề đúng
a) Nêu hai ví dụ về số hữu tỉ
b) Nêu 2 ví dụ về số vô tỉ
a: 1/2; 2/3
b: \(\sqrt{2};\sqrt{3}\)
a) \(\frac{3}{8}; - 0,2\) là các số hữu tỉ
b) \( - \sqrt 3 ;\pi \) là các số vô tỉ
1.Sắp xếp các số sau theo thứ tự từ bé đến lớn:
\(\sqrt{625}-\frac{1}{\sqrt{8}};\sqrt{484}-\frac{1}{\sqrt{5}};\sqrt{576}-\frac{1}{\sqrt{7}};\sqrt{529}-\frac{1}{\sqrt{6}}\)
2. a =\(\sqrt{3}\) là số vô tỉ hay số hữu tỉ ? Vì sao ?
Giúp mình với nhé
Cảm ơn trước ^_^
Bài 2 :
Giả sử \(a=\sqrt{3}\)là số hữu tỉ
Khi đó ta có \(a=\sqrt{3}=\frac{m}{n}\)với m, n tối giản ( n khác 0 )
Từ \(\sqrt{3}=\frac{m}{n}\Rightarrow m=\sqrt{3}n\)
Bình phương 2 vế ta được đẳng thức: \(m^2=3n^2\)(*)
\(\Rightarrow m^2⋮3\)mà m tối giản \(\Rightarrow m⋮3\)
=> m có dạng \(3k\)
Thay m vào (*) ta có : \(9k^2=3n^2\)
\(\Leftrightarrow3k^2=n^2\)
\(\Leftrightarrow n=\sqrt{3}k\)
Vì k là số nguyên => n không là số nguyên
=> điều giả sử là sai
=> \(\sqrt{3}\)là số vô tỉ
chứng minh rằng các số sau là số vô tỉ :
a, \(\sqrt{1+\sqrt{2}}\)
b, m+\(\frac{\sqrt{3}}{n}\)với m,n là các số hữu tỉ , n khác 0
giả sử \(\sqrt{1+\sqrt{2}}=m\) ( m là số hữu tỉ )
\(\Rightarrow\sqrt{2}=m^2-1\)nên \(\sqrt{2}\)là số hữu tỉ ( vô lí )
vậy ...
b) giả sử \(m+\frac{\sqrt{3}}{n}=a\)( a là số hữu tỉ ) thì \(\frac{\sqrt{3}}{n}=a-m\Rightarrow\sqrt{3}=n\left(a-m\right)\)nên là số hữu tỉ ( vô lí )
vậy ....
Các số sau là số hữu tỉ hay vô tỉ? Hãy chứng minh khẳng định của mình:
a) \(\sqrt{6}\)
b)\(\sqrt{1+\sqrt{2}}\)
a, Giả sử \(\sqrt{6}\) là số hữu tỉ
\(\Rightarrow\) \(\sqrt{6}\)viết được dưới dạng phân số tối giản \(\frac{a}{b}\)\(\Rightarrow\) \(\sqrt{6}\)= \(\frac{a}{b}\)\(\Leftrightarrow\) (\(\sqrt{6}\))2 = (\(\frac{a}{b}\))2 \(\Leftrightarrow\) a2 = 6b2 mà (a, b) = 1 \(\Rightarrow\) a2 chia hết cho 6 mà (6, 1) = 1 \(\Rightarrow\) a chia hết cho 6 (1)
Đặt a = 6k \(\Rightarrow\) a2 = 36k2 và a = 6b2 \(\Rightarrow\) 36k2 = 6b2 \(\Leftrightarrow\) b2 = 6k2 mà (6, 1) = 1 \(\Rightarrow\) b2 chia hết cho 6 \(\Rightarrow\) b chia hết cho 6 (2)
Từ (1), (2) và \(\frac{a}{b}\)là phân số tối giản \(\Rightarrow\) Trái với giả thiết (a, b) = 1.
Vậy \(\sqrt{6}\)là số vô tỉ.
b, Giả sử \(\sqrt{1+\sqrt{2}}\)là số hữu tỉ, đặt \(\sqrt{1+\sqrt{2}}\)= a
Ta có: a2 = (\(\sqrt{1+\sqrt{2}}\))2 = 1 + \(\sqrt{2}\)\(\Leftrightarrow\) a2 - 1 = \(\sqrt{2}\)
Ta có: a2 - 1 là số hữu tỉ mà \(\sqrt{2}\)là số vô tỉ \(\Rightarrow\) vô lí
Vậy \(\sqrt{1+\sqrt{2}}\)là số vô tỉ
Chứng Minh rằng
a, \(\sqrt{1+2+3+4+.....\left(n-1\right)+n+\left(n-1\right)+...+3+2+1}=n\)
b, a là số hữu tỉ , b là số vô tỉ thì a+b là số vô tỉ
Đề thiếu điều kiện n là số tự nhiên nhé
\(a)\)\(\sqrt{1+2+3+4+...+\left(n-1\right)+n+\left(n-2\right)+...+3+2+1}\)
\(=\)\(\sqrt{\frac{n\left(n-1\right)}{2}+n+\frac{n\left(n-1\right)}{2}}\)
\(=\)\(\sqrt{\frac{2n\left(n-1\right)}{2}+n}\)
\(=\)\(\sqrt{n\left(n-1\right)+n}\)
\(=\)\(\sqrt{n\left(n-1+1\right)}\)
\(=\)\(\sqrt{n^2}\)
\(=\)\(\left|n\right|\)
Mà n là số tự nhiên nên \(n\ge0\)\(\Rightarrow\)\(\left|n\right|=n\)
Vậy \(\sqrt{1+2+3+4+...+\left(n-1\right)+n+\left(n-1\right)+...+3+2+1}=n\) ( đpcm )
Chúc bạn học tốt ~
Chứng minh rằng: Các số sau là số vô tỉ:
a) \(\sqrt{1+\sqrt{2}}\)
b) \(m+\sqrt{\frac{n}{2}}\) với m,n là các số hữu tỉ khác 0
Chứng minh các số sau vô tỉ:
a)\(\sqrt{1+\sqrt{2}}\)
b)\(m+\frac{\sqrt{3}}{n}\)với m,n là các số hữu tỉ, n\(\ne0\)
Bài làm:
a) Vì 1 là số hữu tỉ, \(\sqrt{2}\) là số vô tỉ
=> \(1+\sqrt{2}\) vô tỉ
\(\Rightarrow\sqrt{1+\sqrt{2}}\) vô tỉ
b) Vì n là số hữu tỉ, \(\sqrt{3}\) vô tỉ
=> \(\frac{\sqrt{3}}{n}\) vô tỉ, mà m hữu tỉ
=> \(m+\frac{\sqrt{3}}{n}\) vô tỉ
Chứng minh : \(m+\frac{\sqrt{3}}{n}\)là số vô tỉ ( với m ; n là số hữu tỉ n khác 0)
Bn tham khảo nè:
giả sử x + y = a với a là số hữu tỉ
=> y = a - x
mà a và x là hữu tỉ nên a - x cũng hữu tỉ
(dễ dàng chứng minh điểu này bằng cách đặt a = p/q và x = m/n)
=> y cũng hữu tỉ
vô lý