Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
Đinh Doãn Nam
Xem chi tiết
Huyền
1 tháng 7 2019 lúc 20:16

2,\(pt\Leftrightarrow12\left(\sqrt{x+1}-2\right)+x^2+x-12=0\)

\(\Leftrightarrow12\cdot\frac{x-3}{\sqrt{x+1}+2}+\left(x-3\right)\left(x+4\right)=0\)

\(\Leftrightarrow\left(x-3\right)\left(\frac{12}{\sqrt{x+1}+2}+x+4\right)=0\)

\(\left(\frac{12}{\sqrt{x+1}+2}+x+4\right)\ge0\left(\forall x>-1\right)\)

\(\Rightarrow x=3\)

Huyền
1 tháng 7 2019 lúc 20:34

c,\(pt\Leftrightarrow3\left(x-1\right)+\frac{x-1}{4x}+\left(2-\sqrt{3x+1}\right)=0\)

\(\Leftrightarrow\left(x-1\right)\left(3+\frac{1}{4x}+\frac{1}{2+\sqrt{3x+1}}\right)=0\)

\(\Rightarrow x=1\)

\(3+\frac{1}{4x}+\frac{1}{2+\sqrt{3x+1}}=0\)

bạn làm nốt pần này nhá

ĐoànThùyDuyên
Xem chi tiết
Nguyễn Lê Phước Thịnh
10 tháng 7 2022 lúc 11:19

a: \(\Leftrightarrow2x^2-8x+3x-12+x^2-7x+10=3x^2-12x-5x+20\)

\(\Leftrightarrow3x^2-12x-2=3x^2-17x+20\)

=>5x=22

hay x=22/5

b: \(\Leftrightarrow24x^2+16x-9x-6-4x^2-16x-7x-28=10x^2-2x+5x-1\)

\(\Leftrightarrow20x^2-16x-34=10x^2+3x-1\)

\(\Leftrightarrow10x^2-19x-33=0\)

hay \(x\in\left\{3;-\dfrac{11}{10}\right\}\)

c: \(\Leftrightarrow x^3+2x^2-5x-10+5x=2x^2+17\)

\(\Leftrightarrow x^3+2x^2-10-2x^2-17=0\)

=>x3=27

=>x=3

d: \(\Leftrightarrow x^3+1-x^3+3x=15\)

=>3x=14

hay x=14/3

lê hữu gia khánh
Xem chi tiết
zZz Cool Kid_new zZz
9 tháng 1 2020 lúc 21:18

\(P\left(x\right)+Q\left(x\right)=f\left(x\right)-g\left(x\right)\)

\(f\left(x\right)-g\left(x\right)=3x^4+3x^3-5x^2+x-5-x^4-3x^3+3x^2-5x+7\)

\(=2x^4-2x^2-4x+2\)

\(\Rightarrow P\left(x\right)+Q\left(x\right)=2x^4-2x^2-4x+2\left(1\right)\)

\(P\left(x\right)-Q\left(x\right)=g\left(x\right)+h\left(x\right)\)

\(g\left(x\right)+h\left(x\right)=x^4+3x^3-3x^2+5x-7+5x^4+2x^3+x^2-5\)

\(=6x^4+5x^3-2x^2+5x-12\)

\(\Rightarrow P\left(x\right)-Q\left(x\right)=6x^4+5x^3-2x^2+5x-12\left(2\right)\)

Từ ( 1 );( 2 ) thì tìm dc P(x) và Q(x)

Khách vãng lai đã xóa
Vũ Đức Lâm Vũ
Xem chi tiết
Nguyễn Lê Phước Thịnh
20 tháng 2 2022 lúc 11:27

a: \(P=-x^2-5x-2x+3+3x^3-2x^2=3x^3-3x^2-7x+3\)

b: \(Q\left(x\right)=5x^2-2x-2+3x^2-6x+5=8x^2-8x+3\)

Hoàng Lê Khánh Huyền
Xem chi tiết
Kẹo Ngọt Cây
Xem chi tiết
Kẹo Ngọt Cây
15 tháng 4 2020 lúc 18:25

Đây là lớp 8 nha các b giúp mk với

Do mk viết nhầm

nguyễn hải đăng
Xem chi tiết
Trần Diệu Linh
20 tháng 4 2020 lúc 22:23

a)

\(\left(4x-10\right)\cdot\left(24+5x\right)=0\\ \Leftrightarrow\left[{}\begin{matrix}4x-10=0\\24+5x=0\end{matrix}\right.\\ \Leftrightarrow\left[{}\begin{matrix}4x=10\\5x=-24\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=\frac{5}{2}\\x=-\frac{24}{5}\end{matrix}\right.\)

Vậy \(S=\left\{\frac{5}{2};-\frac{24}{5}\right\}\)

b)

\(\left(2x-5\right)\left(3x-2\right)=0\\ \Leftrightarrow\left[{}\begin{matrix}2x-5=0\\3x-2=0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=\frac{5}{2}\\x=\frac{2}{3}\end{matrix}\right.\)

Vậy \(S=\left\{\frac{5}{2};\frac{2}{3}\right\}\)

c)

\(\left(2x-1\right)\left(3x+1\right)=0\\ \Leftrightarrow\left[{}\begin{matrix}2x-1=0\\3x+1=0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=\frac{1}{2}\\x=-\frac{1}{3}\end{matrix}\right.\)

Vậy \(S=\left\{\frac{1}{2};-\frac{1}{3}\right\}\)

d)

\(x\left(2x-1\right)=0\\ \Leftrightarrow\left[{}\begin{matrix}x=0\\x=\frac{1}{2}\end{matrix}\right.\)

Vậy \(S=\left\{0;\frac{1}{2}\right\}\)

e) \(\left(5x+3\right)\left(x^2+4\right)\left(x-1\right)=0\)

Do \(x^2\ge0\) Nên \(x^2+4>0\)

\(\left(5x+3\right)\left(x^2+4\right)\left(x-1\right)=0\\ \Leftrightarrow\left[{}\begin{matrix}5x+3=0\\x-1=0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=-\frac{3}{5}\\x=1\end{matrix}\right.\)

Vậy \(S=\left\{-\frac{3}{5};1\right\}\)

....... Còn lại cứ cho mỗi thừa số = 0 rồi tìm x như bình thường thôi bạn

Trương Huy Hoàng
20 tháng 4 2020 lúc 22:24

1. (4x - 10)(24 + 5x) = 0

\(\Leftrightarrow\left[{}\begin{matrix}4x-10=0\\24+5x=0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=\frac{5}{2}\\x=\frac{-24}{5}\end{matrix}\right.\)

Vậy S = {\(\frac{5}{2}\); \(\frac{-24}{5}\)}

2. (2x - 5)(3x - 2) = 0

\(\Leftrightarrow\left[{}\begin{matrix}2x-5=0\\3x-2=0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=\frac{5}{2}\\x=\frac{2}{3}\end{matrix}\right.\)

Vậy S = {\(\frac{5}{2}\); \(\frac{2}{3}\)}

3. (2x - 1)(3x + 1) = 0

\(\Leftrightarrow\left[{}\begin{matrix}2x-1=0\\3x+1=0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=\frac{1}{2}\\x=\frac{-1}{3}\end{matrix}\right.\)

Vậy S = {\(\frac{1}{2}\); \(\frac{-1}{3}\)}

4. x(x2 - 1) = 0

\(\Leftrightarrow\) x(x - 1)(x + 1) = 0

\(\Leftrightarrow\left[{}\begin{matrix}x=0\\x-1=0\\x+1=0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=0\\x=1\\x=-1\end{matrix}\right.\)

Vậy S = {0; 1; -1}

5. (5x + 3)(x2 + 4)(x - 1) = 0

VÌ x2 + 4 > 0 với mọi x nên

\(\Rightarrow\left[{}\begin{matrix}5x+3=0\\x-1=0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=\frac{-3}{5}\\x=1\end{matrix}\right.\)

Vậy S = {\(\frac{-3}{5}\); 1}

6. (x - 1)(x + 2)(x + 3) = 0

\(\Leftrightarrow\left[{}\begin{matrix}x-1=0\\x+2=0\\x+3=0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=1\\x=-2\\x=-3\end{matrix}\right.\)

Vậy S = {1; -2; -3}

7. (x - 1)(x + 5)(-3x + 8) = 0

\(\Leftrightarrow\left[{}\begin{matrix}x-1=0\\x+5=0\\-3x+8=0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=1\\x=-5\\x=\frac{8}{3}\end{matrix}\right.\)

Vậy S = {1; -5; \(\frac{8}{3}\)}

Chúc bn học tốt!!

Nguyen Ngoc Anh
Xem chi tiết
Aki Tsuki
14 tháng 8 2018 lúc 18:21

a/ Thu gọn và sắp xếp:

\(P\left(x\right)=x^2+5x^4-3x^3+x^2+4x^4+3x^3-x+5=\left(5x^4+4x^4\right)+\left(3x^3-3x^3\right)+\left(x^2+x^2\right)-x+5=9x^4+2x^2-x+5\)

---

\(Q\left(x\right)=x-5x^3-x^2-x^4+4x^3-x^2+3x-1=-x^4+\left(4x^3-5x^3\right)+\left(-x^2-x^2\right)+\left(x+3x\right)-1=-x^4-x^3-2x^2+4x-1\)

b/ \(P\left(x\right)+Q\left(x\right)=9x^4+2x^2-x+5+\left(-x^4-x^3-2x^2+4x-1\right)=9x^4+2x^2-x+5-x^4-x^3-2x^2+4x-1=8x^4-x^3+3x+4\)

--

\(P\left(x\right)-Q\left(x\right)=9x^4+2x^2-x+5-\left(-x^4-x^3-2x^2+4x-1\right)=9x^4+2x^2-x+5+x^4+x^3+2x^2-4x+1=10x^4+x^3+4x^2-5x+6\)

Nguyễn Tình
Xem chi tiết
Nguyễn Lê Phước Thịnh
2 tháng 7 2020 lúc 11:44

Ta có: \(P\left(x\right)=x^2+5x^4-3x^3+x^2+4x^4+3x^3-x+5\)

\(=9x^4+2x^2-x+5\)

Ta có: \(Q\left(x\right)=x-5x^3-x^2-x^4+4x^3-x^2-3x-1\)

\(=-x^4-x^3-2x^2-2x-1\)

Ta có: P(x)+Q(x)

\(=9x^4+2x^2-x+5-x^4-x^3-2x^2-2x-1\)

\(=8x^4-x^3-3x+4\)

Ta có: P(x)-Q(x)

\(=9x^4+2x^2-x+5+x^4+x^3+2x^2+2x+1\)

\(=10x^4+x^3+4x^2+x+6\)

Trang Nguyen
Xem chi tiết
Hung nguyen
25 tháng 2 2017 lúc 9:49

1/ \(3x^2+4x-3=4x\sqrt{4x-3}\)

\(\Leftrightarrow\left(4x^2-4x\sqrt{4x-3}+4x-3\right)-x^2=0\)

\(\Leftrightarrow\left(2x-\sqrt{4x-3}\right)^2-x^2=0\)

\(\Leftrightarrow\left(3x-\sqrt{4x-3}\right)\left(x-\sqrt{4x-3}\right)=0\)

\(\Leftrightarrow\left[\begin{matrix}3x=\sqrt{4x-3}\\x=\sqrt{4x-3}\end{matrix}\right.\)

\(\Leftrightarrow\left[\begin{matrix}9x^2-4x+3=0\\x^2-4x+3=0\end{matrix}\right.\)

\(\Leftrightarrow\left[\begin{matrix}x=1\\x=3\end{matrix}\right.\)

Huyền
17 tháng 6 2019 lúc 16:36

3.\(pt\Leftrightarrow\sqrt{3x+8}-\sqrt{3x+5}=\sqrt{5x-4}-\sqrt{5x-7}\)

\(\Leftrightarrow\frac{3x+8-5x+4}{\sqrt{3x+8}+\sqrt{5x+4}}-\frac{3x+5-5x+7}{\sqrt{3x+5}+\sqrt{5x+7}}=0\)

\(\Leftrightarrow\left(12-2x\right)\left(\frac{1}{\sqrt{3x+8}+\sqrt{5x+4}}+\frac{1}{\sqrt{3x+5}+\sqrt{5x+7}}\right)=0\)

\(\Rightarrow x=6\)