Tìm hai số chính phương có 2 chứ số mà tổng của chúng là 80
Tìm số có hai chứ số để tỉ số giữa tổng bình phương các chữ số của nó và chính nó là lớn nhất.
Tìm hai số chính phương biết tổng của chúng cũng là một số chính phương
Cho hai số, biết rằng tổng của chúng là 80 còn hiệu của chúng là 11. Tìm hai số đó bằng cách lập phương trình.
Cho 5 số nguyên dương đôi một phân biệt sao cho chúng chỉ có các ước nguyên tố là 2 hoặc 3 . Chứng minh rằng ta luôn tìm được hai số trong các số đã cho mà tích của chúng là số chính phương
Gọi 5 số nguyên dương đã cho là K1, K2, K3, K4, K5 (phân biệt từng đôi một).Ta có :
K1 = 2^(a1).3^(b1)
K2 = 2^(a2).3^(b2)
K3 = 2^(a3).3^(b3)
K4 = 2^(a4).3^(b4)
K5 = 2^(a5).3^(b5)
(a1,a2,a3,... và b1,b2,b3,... đều là số tự nhiên)
Xét 4 tập hợp sau :
+ A là tập hợp các số có dạng 2^m.3^n (với m lẻ, n lẻ)
+ B là tập hợp các số có dạng 2^m.3^n (với m lẻ, n chẵn)
+ C là tập hợp các số có dạng 2^m.3^n (với m chẵn, n lẻ)
+ D là tập hợp các số có dạng 2^m.3^n (với m chẵn, n chẵn)
Rõ ràng trong 5 số K1, K2, K3, K4, K5 chắc chắn có ít nhất 2 số thuộc cùng 1 tập hợp ví dụ Ki và Kj
Ki = 2^(ai).3^(bi) và Kj = 2^(aj).3^(bj) ---> Ki.Kj = 2^(ai+aj).3^(bi+bj)
Vì Ki và Kj thuộc cùng 1 tập hợp ---> ai và aj cùng tính chẵn lẻ, bi và bj cùng tính chẵn lẻ ---> ai+aj và bi+bj đều chẵn ---> Ki.Kj = 2^(ai+aj).3^(bi+bj) là số chính phương.
Cho 5 số nguyên dương đôi một phân biệt sao cho chúng chỉ có các ước nguyên tố là 2 hoặc 3 . Chứng minh rằng ta luôn tìm được hai số trong các số đã cho mà tích của chúng là số chính phương
Cách 1:
Số trong 5 số có dạng 2x.3y trong đó x,y là số tự nhiên khác 0.
(x;y) chỉ có thể (C;C); (L;L); (C;L); (L;C) vì có 5 số 4 dạng nên tồn tại 2 số cùng một dạng nên tích 2 số này là số chính phương.
Cách 2:
Ta dễ dàng chứng minh được trong 3 số tự nhiên bất kỳ luôn tìm được 2 số bất kỳ mà tổng của chúng chia hết cho 2.
Vì số trong 5 số có dạng 2x.3y trong đó x,y là số tự nhiên khác 0 nên ta luôn chọn được 2 số mà tích của nó là số chính phương.
bài 1) trong ba số tự nhiên bất kỳ có tìm được hai số mà tổng của chúng là số chẵn hay không?
bài 2) trong 5 số chẵn không tròn chục có tìm được hai số mà hiệu của chúng là số tròn chục không
Các bạn giúp minh giải hai bài toán này theo phương pháp ứng dụng nguyên lí đi-ric-lê. Mình thanks all
CMR :
1 . tổng bình phương của 3 số tự nhiên liên tiếp ko là số chính phương
2 . ko tồn tại 2 số chính phương mà hiệu của chúng là 2010 ; 1682 ; 2018 ...
1, Gọi 3 số chính phương của 3 số tự nhiên liên tiếp lần lượt là : (a-1)^2 ; a^2 ; (a+1)^2
Xét : (a-1)^2+a^2+(a+1)^2 = a^2-2a+1+a^2+a^2+2a+1 = 3a^2+2 chia 3 dư 2
=> (a-1)^2+a^2+(a+1)^2 ko phải là số chính phương
Tk mk nha
Tìm 2 số chính phương liên tiếp để tổng của chúng là 1 số chính phương.
2 số chính phương liên tiếp đó là: 9 và 16 .
Đáp số: 9;16
tổng của hai số chẵn là 80. Tìm 2 số đó biết giữa chúng có 3 số chẵn khác
Hiệu 2 số đó:
2 x (3+1) = 8
Số lớn là:
(80+8):2=44
Số bé là:
80 - 44 = 36
Đ,số:.......
tìm 2 số nguyên dương có tổng bằng 17 và tích của chúng là 1 số chính phương