GPT:[x+√(x^2+9)] * [√(x+21)-x]=9
GPT sau: \(x+\sqrt{17-x^2}+x\sqrt{17-x^2}=9\)
ĐKXĐ: ...
Đặt \(\left\{{}\begin{matrix}u=v\\v=\sqrt{17-x^2}\end{matrix}\right.\)
\(\Rightarrow\left\{{}\begin{matrix}u+v+uv=9\\u^2+v^2=17\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}uv=9-\left(u+v\right)\\\left(u+v\right)^2-2uv=17\end{matrix}\right.\)
\(\Rightarrow\left(u+v\right)^2+2\left(u+v\right)-35=0\)
\(\Rightarrow\left[{}\begin{matrix}u+v=5\Rightarrow uv=4\\u+v=-7\Rightarrow uv=16\end{matrix}\right.\)
\(\Rightarrow...\)
Gpt: \(13\sqrt{x^2-x^4}+9\sqrt{x^2+x^4}=16\)
ĐKXĐ: \(-1\le x\le1\).
Đặt \(x^2=a\left(0\le a\le1\right)\).
PT đã cho được viết lại thành:
\(13\sqrt{a-a^2}+9\sqrt{a+a^2}=16\).
Áp dụng bất đẳng thức AM - GM cho hai số thực không âm ta có:
\(a+4\left(1-a\right)\ge2\sqrt{a.4\left(1-a\right)}\)
\(\Rightarrow\sqrt{a-a^2}\le1-\dfrac{3}{4}a\)
\(\Rightarrow13\sqrt{a-a^2}\le13-\dfrac{39}{4}a\); (1)
\(a+\dfrac{4}{9}\left(a+1\right)\ge2\sqrt{a.\dfrac{4}{9}\left(a+1\right)}\)
\(\Rightarrow\sqrt{a\left(a+1\right)}\le\dfrac{13}{12}a+\dfrac{1}{3}\)
\(\Rightarrow9\sqrt{a+a^2}\le\dfrac{39a}{4}+3\). (2)
Cộng vế với vế của (1), (2) ta có \(13\sqrt{a-a^2}+9\sqrt{a+a^2}\le16\).
Mặt khác từ pt đã cho ta có đẳng thức phải xảy ra.
Do đó đẳng thức ở (1) và (2) cũng xảy ra
\(\Leftrightarrow\left\{{}\begin{matrix}a=4\left(1-a\right)\\a=\dfrac{2}{3}\left(1+a\right)\end{matrix}\right.\Leftrightarrow a=\dfrac{4}{5}\Leftrightarrow x=\pm\sqrt{\dfrac{4}{5}}\) (TMĐK).
Vậy...
GPT \(\sqrt{x-1}+\sqrt{9-x}+2\sqrt{-x^2+10x-9}=12\)
phả là 10x chứ
đặt 2 căn đầu bằng a
bình phương a lên
GPT: (x2+2x+1)(x+2)-x2(x-3)-7x(x-1)=3x-9
(x^2+2x+1)(x+2)-x^2(x-3)-7x(x-1)=3x-9
<=>x3+4x2+5x+2-x3+3x2-7x2+7x=3x-9
<=>14x+2=3x-9
<=>14x-3x=-9-2
<=>11x=-11
<=>x=-1
vậy S={-1}
GPT \(x^4+x^2-6x+9=0\)
https://olm.vn/hoi-dap/tim-kiem?q=GPT+:+x4+x3-8x2-9x=9&id=203022
gpt \(\sqrt{5x^2+14x+9}-\sqrt{x^2-x-20}=5\sqrt{x+1}\)
ĐK: \(x\ge5\)
Chuyển vế, bình phương ta đc:
\(\sqrt{5x^2+14x+9}=5\sqrt{\left(x^2-x-20\right)\left(x+1\right)}\)
Nhận xét:
Không tồn tại số \(\alpha,\beta\) để: \(2x^2-5x+2=\alpha\left(x^2-x-20\right)+\beta\left(x+1\right)\)
Ta có: \(\left(x^2-x-20\right)\left(x+1\right)=\left(x+4\right)\left(x-5\right)\left(x+1\right)=\left(x+4\right)\left(x^2-4x-5\right)\)
PT đc vt lại là: \(2\left(x^2-4x-5\right)+3\left(x+4\right)=5\sqrt{\left(x^2-4x-5\right)\left(x+4\right)}\)
Đặt: \(\left\{{}\begin{matrix}u=x^2-4x-5\\v=x+4\end{matrix}\right.\)
Khi đó PT trở thành:
\(2u+3v=5\sqrt{uv}\Leftrightarrow\left[{}\begin{matrix}u=v\\u=\frac{9}{4}v\end{matrix}\right.\)
Xét \(u=v\) ta có PT:
\(x^2-4x-5=x+4\Leftrightarrow x^2-5x+9=0\Leftrightarrow\left[{}\begin{matrix}x=\frac{5+\sqrt{61}}{2}\\x=\frac{5-\sqrt{61}}{2}\left(loại\right)\end{matrix}\right.\)
Xét \(u=\frac{9}{4}v\) ta có PT:
\(x^2-4x-5=\frac{9}{4}\left(x+4\right)\Leftrightarrow4x^2-25x-56=0\Leftrightarrow\left[{}\begin{matrix}x=8\\x=-\frac{7}{4}\left(loại\right)\end{matrix}\right.\)
Vậy PT có 2 nghiệm là \(x=8;x=\frac{5+\sqrt{61}}{2}\)
GPT: √5x2+14x+9−√x^2−x−20−−−−−−−−−√=5√x+1
cách ngắn như sau
Căn(5x^2+14x+9) = Căn(x^2-x-20) +5căn(x+1)
LƯU Ý
Nguyễn Huy Thắng KHÔNG ĐƯỢC đăng các câu hỏi liên quan đến Toán, hoặc các bài toán linh tinh gây nhiễu diễn đàn . Online Math có thể áp dụng các biện pháp như trừ điểm, thậm chí khóa vĩnh viễn tài khoản của mày nếu mày vi phạm nội quy nhiều lần.
Chuyên mục Giúp tôi giải toán dành cho những bạn gặp bài toán khó hoặc có bài toán hay muốn chia sẻ. Bởi vậy Nguyễn Huy Thắng chú ý không nên gửi bài linh tinh, không được có các hành vi nhằm gian lận điểm hỏi đáp như tạo câu hỏi và tự trả lời rồi chọn đúng.
Mỗi thành viên được gửi tối đa 5 câu hỏi trong 1 ngày trừ mày
GPT : \(\sqrt{\sqrt{x}+1-2\sqrt[4]{x}}+\sqrt{\sqrt{x}+9-6\sqrt[4]{x}}=2\)
ĐKXĐ:\(x\ge0\)
\(\Leftrightarrow\sqrt{\left(\sqrt[4]{x}-1\right)^2}+\sqrt{\left(\sqrt[4]{x}-3\right)^2}=2\)
\(\Leftrightarrow\left|\sqrt[4]{x}-1\right|+\left|\sqrt[4]{x}-3\right|=2\)
Ta có: \(\left|\sqrt[4]{x}-1\right|\ge\sqrt[4]{x}-1;\left|\sqrt[4]{x}-3\right|\ge3-\sqrt[4]{x}\)
\(\Rightarrow\left|\sqrt[4]{x}-1\right|+\left|\sqrt[4]{x}-3\right|\ge\sqrt[4]{x}-1+3-\sqrt[4]{x}=2\)
Dấu "=" xảy ra \(\Leftrightarrow\hept{\begin{cases}\left|\sqrt[4]{x}-1\right|=\sqrt[4]{x}-1\\\left|\sqrt[4]{x}-3\right|=3-\sqrt[4]{x}\end{cases}\Leftrightarrow\hept{\begin{cases}\sqrt[4]{x}-1\ge0\\\sqrt[4]{x}-3\le0\end{cases}\Leftrightarrow}\hept{\begin{cases}\sqrt[4]{x}\ge1\\\sqrt[4]{x}\le3\end{cases}\Leftrightarrow}\hept{\begin{cases}x\ge1\\x\le81\end{cases}\left(TMĐKXĐ\right)}}\)
GPT : x4+x3-8x2-9x=9
<=>x4-3x3+4x3-12x2+4x2-12x+3x-9=0
<=>x3(x-3)+4x2(x-3)+4x(x-3)+3(x-3)=0
<=>(x-3)(x3+4x2+4x+3)=0
<=>(x-3)(x3+3x2+x2+3x+x+3)=0
<=>(x-3)(x+3)(x2+x+1)=0
<=>x=3 hoặc x=-3
cái này mà là toán 9 á? Cái này lớp 8 tôi đã biết giải!
GPT : cos4x . \(\sqrt{\dfrac{\pi^2}{9}^{ }-x^2}\)=0
\(cos4x\cdot\sqrt{\dfrac{\pi^2}{9}-x^2}=0\)
\(\Leftrightarrow\left[{}\begin{matrix}cos4x=0\\\sqrt{\dfrac{\pi^2}{9}-x^2}=0\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}4x=\dfrac{\pi}{2}+k\pi\left(k\in Z\right)\\\dfrac{\pi^2}{9}-x^2=0\end{matrix}\right.\)
\(\Leftrightarrow\left[{}\begin{matrix}x=\dfrac{\pi}{8}+\dfrac{k\pi}{4}\left(k\in Z\right)\\x=\pm\dfrac{\pi}{3}\end{matrix}\right.\)