Chứng minh rằng với mọi số tự nhiên n thì n2 + n + 2016 không chia hết cho 5
a,Chứng tỏ rằng hai số 9n+7 và 4n+3 là hai số nguyên tố cùng nhau.
b, Chứng minh rằng với mọi số tự nhiên n thì n2+n+2016 không chia hết cho 5.
Chứng minh rằng với mọi số tự nhiên thì n2+n+1 không chia hết cho 4.
Với mọi số tự nhiên n.
Ta có: \(n^2+n+1=n\left(n+1\right)+1\)
Do n; n + 1 là hai số tự nhiên liên tiếp
=> n ( n + 1) chia hết cho 2.
=> n ( n+ 1) + 1 không chia hết chia hết cho 2
=> \(n^2+n+1\)không chia hết cho 2
=> \(n^2+n+1\) không chia hết cho 4.
Giả sử như mệnh đề trên đúng :
n^2+1 chia hết cho 4
* Nếu n chẵn : n = 2k , k thuộc N
=> n^2 +1 = 4k^2 +1 k chia hết cho 4
* nếu n lẻ : n = 2k + 1
=> n^2 +1 = 4k^2 +4k +2
=> n^2 +1 = 4k(k+1)+2
k , k +1 là 2 số tự nhiên liên tiếp
=> k(k+1) chia hết cho 2
=> 4k(k+1)chia hết cho 4
=> 4k(k+1)+2 chia cho 4 , dư 2
=> 4k (k+1)+2 k chia hết cho 4
Chứng tỏ rằng với mọi số tự nhiên n thì tích n.(n + 5) chia hết cho 2.
+ Xét TH1: n chẵn
Suy ra n chia hết 2, do đó n(n + 5) cũng chia hết cho 2.
+ Xét TH2: n lẻ
Suy ra n + 5 chẵn
Do đó (n + 5) chia hết 2
Vậy n(n +5) chia hết cho 2.
Chứng tỏ rằng với mọi số tự nhiên n thì tích nx(n+5) chia hết cho 2.
TA CÓ
+ Nếu n chia hết cho 2 thì nx(n+5) chia hết cho 2 thì bài toán đã được chứng minh
+Nếu n ko chia hết cho 2 thì n = 2k+1 suy ra n+5 =2k+5+1=2k+6
mà 2k chia hết cho 2 và 6 chia hết cho 2 nên n+5 chia hết cho 2
suy ra n(n+5) chia hết cho 2
Vậy n(n+5) luôn chia hết cho 2 (đpcm)
Nếu n = 2k => n chia hết cho 2
=> n(n + 5) chia hết cho 2
Nếu n = 2k + 1 => n + 5 = 2k + 1 + 5 = 2k + 6 chia hết cho 2
=> n + 5 chia hết cho 2
=> n(n + 5) chia hết cho 2
Vậy với mọi số tự nhiên n thì tích n(n + 5) chia hết cho 2.
nếu n lẻ thì n+5chawnx=>đpcm
n chẵn=>đpcm
Chứng tỏ rằng với mọi số tự nhiên n thì tích (n+3).(n+12) là số chia hết cho 2
n luôn chia hết cho 2
vì n + 3 x n + 12 luôn là số chẵn
Chứng tỏ rằng với mọi số tự nhiên n thì tích n.(n + 5) chia hết cho 2.
Ai nhank mk tick
n(n + 5) = n2 + 5n
+ Nếu n là lẻ thì n2 và 5n đều là lẻ. Khi đó n2 + 5n là chẵn. ⇒ n2 + 5n ⋮ 2
+ Nếu n là chẵn thì n2 và 5n đều là chẵn. Khi đó n2 + 5n là chẵn. ⇒ n2 + 5n ⋮ 2
⇒ ĐPCM
chứng minh rằng với mọi số tự nhiên n thì
3^n+2 - 2^n+2 + 3^n -2^2 chia hết cho 10
Ta có:
\(3^{n+2}-2^{n+2}+3^n-2^n\)
\(=\left(3^{n+2}+3^n\right)-\left(2^{n+2}+2^n\right)\)
\(=\left(3^n.3^2+3^n.1\right)-\left(2^n.2^2+2^n.1\right)\)
\(=3^n\left(3^2+1\right)-2^n\left(2^2+1\right)\)
\(=3^n\left(9+1\right)-2^{n-1}.2^1\left(4+1\right)\)
\(=3^n.10-2^{n-1}.2.5\)
\(=3^n.10-2^{n-1}.10\)
\(=\left(3^n-2^{n-1}\right).10\text{⋮}10\)
chứng minh rằng với mọi số tự nhiên n thì trong hai số 2^n+2 và 2^n+1 có một và chỉ 1 số chia hết cho 3
Chứng minh rằng mọi số tự nhiên \(n\) thì \(n^2+n+6\) không chia hết cho 5
Ta có: \(n^2+n+6=n\left(n+1\right)+6\)
Vì n(n+1) là tích của hai số tự nhiên liên tiếp nên n(n+1) không có chữ số tận cùng là 4 hoặc 9
Vì n(n+1) không có chữ số tận cùng là 4 hoặc 9 nên n(n+1) + 6 không có chữ số tận cùng là 0 hoặc 5
Mà các chữ số khác chữ số tận cùng 0 hoặc 5 thì không chia hết cho 5
Suy ra n(n+1) + 6 không chia hết cho 5
hay n^2 + n + 6 không chia hết cho 5 với mọi số tự nhiên n ( đpcm )
Nhớ k cho mình nhé! Thank you!!!
Ta có: n
2
+ n + 6 = n n + 1 + 6
Vì n(n+1) là tích của hai số tự nhiên liên tiếp nên n(n+1) không có chữ số tận cùng là 4 hoặc 9
Vì n(n+1) không có chữ số tận cùng là 4 hoặc 9 nên n(n+1) + 6 không có chữ số tận cùng là 0 hoặc 5
Mà các chữ số khác chữ số tận cùng 0 hoặc 5 thì không chia hết cho 5
Suy ra n(n+1) + 6 không chia hết cho 5
hay n^2 + n + 6 không chia hết cho 5 với mọi số tự nhiên n ( đpcm )
chúc bn hok tốt @_@