cmr:x2+6x+10>0 với mọi x
Chứng minh rằng:
a) x2 + x + 1 > 0 với mọi x
b)4y2 + 2y + 1 > 0 với mọi y
c) -2x2 + 6x - 10 < 0 với mọi x
a: \(x^2+x+1=x^2+x+\dfrac{1}{4}+\dfrac{3}{4}\)
\(=\left(x+\dfrac{1}{2}\right)^2+\dfrac{3}{4}>=\dfrac{3}{4}>0\forall x\)
b: \(4y^2+2y+1\)
\(=4\left(y^2+\dfrac{1}{2}y+\dfrac{1}{4}\right)\)
\(=4\left(y^2+2\cdot y\cdot\dfrac{1}{4}+\dfrac{1}{16}+\dfrac{3}{16}\right)\)
\(=4\left(y+\dfrac{1}{4}\right)^2+\dfrac{3}{4}>=\dfrac{3}{4}>0\forall y\)
c: \(-2x^2+6x-10\)
\(=-2\left(x^2-3x+5\right)\)
\(=-2\left(x^2-3x+\dfrac{9}{4}+\dfrac{11}{4}\right)\)
\(=-2\left(x-\dfrac{3}{2}\right)^2-\dfrac{11}{2}< =-\dfrac{11}{2}< 0\forall x\)
`#3107.101107`
a)
`x^2 + x + 1`
`= (x^2 + 2*x*1/2 + 1/4) + 3/4`
`= (x + 1/2)^2 + 3/4`
Vì `(x + 1/2)^2 \ge 0` `AA` `x`
`=> (x + 1/2)^2 + 3/4 \ge 3/4` `AA` `x`
Vậy, `x^2 + x + 1 > 0` `AA` `x`
b)
`4y^2 + 2y + 1`
`= [(2y)^2 + 2*2y*1/2 + 1/4] + 3/4`
`= (2y + 1/2)^2 + 3/4`
Vì `(2y + 1/2)^2 \ge 0` `AA` `y`
`=> (2y + 1/2)^2 + 3/4 \ge 3/4` `AA` `y`
Vậy, `4y^2 + 2y + 1 > 0` `AA` `y`
c)
`-2x^2 + 6x - 10`
`= -(2x^2 - 6x + 10)`
`= -2(x^2 - 3x + 5)`
`= -2[ (x^2 - 2*x*3/2 + 9/4) + 11/4]`
`= -2[ (x - 3/2)^2 + 11/4]`
`= -2(x - 3/2)^2 - 11/2`
Vì `-2(x - 3/2)^2 \le 0` `AA` `x`
`=> -2(x - 3/2)^2 - 11/2 \le 11/2` `AA` `x`
Vậy, `-2x^2 + 6x - 10 < 0` `AA `x.`
Chứng tỏ
a, x^2 -2x+2 > 0 với mọi x
b, 6x-x^2-10<0 với mọi x
a. x2 - 2x + 2 > 0
⇔ (x2 - 2x + 1) + 1 > 0
Chứng minh
a, x^2 - 6x + 10 > 0 với mọi x
b, 4x - x^2 - 5 < 0 với mọi x
Chứng tỏ rằng: x 2 – 6x + 10 > 0 với mọi x
Ta có: x 2 – 6x + 10 = x 2 – 2.x.3 + 9 + 1 = x - 3 2 + 1
Vì x - 3 2 ≥ 0 với mọi x nên x - 3 2 + 1 > 0 mọi x
Vậy x 2 – 6x + 10 > 0 với mọi x.(đpcm)
x^2 - 6x + 10 > với mọi x
4x - x^2 - 5 < 0 với mọi x
a. \(^{x^2-6x+10>0}\) có \(\left(^{ }x-3\right)^2+1>0\) => điều phải CM
b. -(x^2 -4x+5) = -(x-2)^2 -1 < 0 với mọi x
Chúng tỏ rằng:
a, x^2 - 6x + 10>0 với mọi x
b, 4x - x^2 -5<0 với mọi x
c, (x + 5)(x - 3) + 20>0 với mọi x
a) Có x2-6x+10=(x2-2.x.3+32)+1=(x-3)2+1
Vì (x-3)2 ≥0 với mọi x
nên (x-3)2+1>0 với mọi x
b) Có 4x-x2-5=-(x2-4x+4)-1=-(x2-2.x.2+22)-1=-(x-2)2-1
Vì -(x-2)2≤0 với mọi x
nên -(x-2)2-1<0 với mọi x
c)Gỉa sử (x+5)(x-3)+20>0 là đúng thì
⇔x2-3x+5x-15+20>0
⇔x2+2x+5>0 ⇔(x2+2x.1+12)+4>0 ⇔(x+1)2+4>0
Vì (x+1)2 >=0 với mọi x
Nên (x+1)2+4>0 là đúng
Vậy (x+5)(x-3)+20>0 với mọi x
Bài 18 trang 7 SBT Toán 8 Tập 1: Chứng tỏ rằng:
a. x2 – 6x + 10 > 0 với mọi x
b. 4x – x2 – 5 < 0 với mọi x
a) \(x^2-6x+10=\left(x^2-6x+9\right)+1=\left(x-3\right)^2+1\ge1>0\forall x\)
b) \(4x-x^2-5=-\left(x^2-4x+4\right)-1=-\left(x-2\right)^2-1\le-1< 0\forall x\)
Chứng tỏ rằng :
a)x2-6x+10 lớn hơn 0 với mọi x
b)4x-x2-5<0 với mọi x
a)x2-6x+10
Ta có:x2-6x+10=x2-2.3x+9+1
=(x-3)2+1
Vì (x-3)2\(\ge\)0
Suy ra:(x-3)2+1\(\ge\)1(đpcm)
b)4x-x2-5
Ta có:4x-x2-5=-(x2-4x+5)
=-(x2-2.2x+4)-1
=-1-(x-2)2
Vì -(x-2)2\(\le\)0
Suy ra:-1-(x-2)2\(\le\)-1(đpcm)
a) \(x^2-6x+10=\left(x^2-6x+9\right)+1=\left(x-3\right)^2+1>0\) với mọi x
b) \(4x-x^2-5=-\left(x^2-4x+4\right)-1=-\left(x-2\right)^2-1< 0\) với mọi x
a)x2-6x+10
=x2-6x+9+1
=(x-3)2+1
Ta thấy:\(\left(x-3\right)\ge0\) với mọi x
\(\Rightarrow\left(x-3\right)^2+1>0\) với mọi x
b)4x-x2-5
=-(x2-4x+5)
=-(x-4x+4+1)
=-(x-2)2-1
Ta thấy:\(-\left(x-2\right)^2\le0\) với mọi x
\(\Rightarrow-\left(x-2\right)^2-1< 0\) với mọi x
Chứng minh rằng x2 - 6x + 10 > 0 với mọi X
Mọi người giúp e với ạ
Ta có: \(x^2-6x+10\)
\(=x^2-6x+9+1\)
\(=\left(x-3\right)^2+1\)
Ta có: \(\left(x-3\right)^2\ge0\forall x\)
\(\Rightarrow\left(x-3\right)^2+1\ge1>0\forall x\)
hay \(x^2-6x+10>0\forall x\)