20+2.(x+3)=5mu2.4
(2x-6)=2.5mu4:5mu3
1,x=3x2
2,(x+5)(x-3)-(x-30)=0
3,(2x-6)(x+4)+2(2x-6)=0
4,(2x-5)(x+9)+6x-15=0
3,(2x-5)(x+6)+8x-20=0
\(a,x=3x^2\Rightarrow x-3x^2=0\Rightarrow x\left(1-3x\right)=0\Rightarrow\orbr{\begin{cases}x=0\\1-3x=0\end{cases}}\Rightarrow\orbr{\begin{cases}x=0\\x=\frac{1}{3}\end{cases}}\)
\(b,\left(2x-6\right)\left(x+4\right)+2\left(2x-6\right)=0\)
\(\Rightarrow\left(2x-6\right)\left(x+4+2\right)=0\)
\(\Rightarrow\left(2x-6\right)\left(x+6\right)=0\)
\(\Rightarrow\orbr{\begin{cases}2x-6=0\\x+6=0\end{cases}}\Rightarrow\orbr{\begin{cases}x=3\\x=-6\end{cases}}\)
\(c,\left(2x-5\right)\left(x+9\right)+6x-15=0\)
\(\Rightarrow\left(2x-5\right)\left(x+9\right)+3\left(2x-5\right)=0\)
\(\Rightarrow\left(2x-5\right)\left(x+9+3\right)=0\)
\(\Rightarrow\left(2x-5\right)\left(x+12\right)=0\)
\(\Rightarrow\orbr{\begin{cases}2x-5=0\\x+12=0\end{cases}}\Rightarrow\orbr{\begin{cases}x=\frac{5}{2}\\x=-12\end{cases}}\)
BÀI 2: rút gọn biểu thức
a) 2x( 5-3x^2) - 10( 6+x)
b)3(-x+2)-6( 1-x+5x^20)
c) 7x( 2-5x^2+1/2x^3)- 14x( 1-2x^2)
a) \(2x\left(5-3x^2\right)-10\left(6+x\right)\)
\(=10x-6x^3-60-10x\)
\(=\) \(-6x^3-60\)
a) \(2x\left(5-3x^2\right)-10\left(6+x\right)\\ =2x.5-2x.3x^2-10.6-10.x\\ =10x-6x^3-60-10x\)
b) \(3\left(-x+2\right)-6\left(1-x+5x^{20}\right)\\ =-3.x+3.2-6.1+6.x-5.5x^{20}\\ =-3x+6-6+6x-25x^{20}=25x^{20}+3x\)
c) \(7x\left(2-5x^2+\dfrac{1}{2}x^3\right)-14x\left(1-2x^2\right)\\ =7x.2-7x.5x^2+7x.\dfrac{1}{2}x^3-14x.1+14x.2x^2\\ =14x-25x^3+\dfrac{7}{2}x^4-14x+28x^3=3x^2+\dfrac{7}{2}x^4\)
b) \(3\left(-x+2\right)-6\left(1-x+5x^{20}\right)\)
\(=-3x+6-6+6x-30x^{20}\)
\(=3x-30x^{20}\)
A=1+5+5mu2+5mu3...+5mu10+5mu11chia het ch 6 va31
Bài 2: Tìm x nguyên
a) 20 – [42 + (x – 6)] = 90
b) (x + 3).(2x – 4) = 0
c) 1000:[30 + (2x – 6)] = 32 + 42 và x ∈ N
\(2,\)
\(a,20-\left[4^2+\left(x-6\right)\right]=90\)
\(\Rightarrow20-16-x+6=90\)
\(\Rightarrow10-x=90\)
\(\Rightarrow x=-80\)
Vậy: \(x=-80\)
\(b,\left(x+3\right)\left(2x-4\right)=0\)
\(\Rightarrow\left[{}\begin{matrix}x+3=0\\2x-4=0\end{matrix}\right.\)
\(\Rightarrow\left[{}\begin{matrix}x=-3\\x=2\end{matrix}\right.\)
Vậy: \(x\in\left\{-3;2\right\}\)
\(c,1000:\left[30+\left(2^x-6\right)\right]=3^2+4^2\left(x\in N\right)\)
\(\Rightarrow1000:\left(30+2^x-6\right)=25\)
\(\Rightarrow24+2^x=40\)
\(\Rightarrow2^x=16\)
\(\Rightarrow x=4\)
Vậy: \(x=4\)
Bài 2: Tìm x nguyên
a) 20 – [42 + (x – 6)] = 90
b) (x + 3).(2x – 4) = 0
c) 1000:[30 + (2x – 6)] = 32 + 42 và x ∈ N
\(2,\)
\(a,20-\left[42+\left(x-6\right)\right]=90\)
\(\Rightarrow20-42-x+6-90=0\)
\(\Rightarrow x=-106\)
Vậy: \(x=-106\)
\(b,\left(x+3\right)\left(2x-4\right)=0\)
\(\Rightarrow\left[{}\begin{matrix}x+3=0\\2x-4=0\end{matrix}\right.\)
\(\Rightarrow\left[{}\begin{matrix}x=-3\\x=2\end{matrix}\right.\)
Vậy: \(x\in\left\{-3;2\right\}\)
\(c,1000:\left[30+\left(2x-6\right)\right]=32+42\left(x\in N\right)\)
\(\Rightarrow1000:\left(30+2x-6\right)=74\)
\(\Rightarrow1000:\left(24+2x\right)=74\)
\(\Rightarrow24+2x=\dfrac{500}{37}\)
\(\Rightarrow2x=-\dfrac{388}{37}\)
\(\Rightarrow x=-\dfrac{194}{37}\)
Mà \(x\in N\)
\(\Rightarrow x\in\varnothing\)
Vậy: \(x\in\varnothing\)
tính giới hạn
a) \(\lim\limits_{x\rightarrow-2}\dfrac{4-x^2}{2x^2+7x+6}\)
b) \(\lim\limits_{x\rightarrow4}\dfrac{2x^2-13x+20}{x^3+64}\)
c) \(\lim\limits_{x\rightarrow-1}\dfrac{2x^2+8x+6}{-2x^2+7x+9}\)
a: \(\lim\limits_{x\rightarrow-2}\dfrac{4-x^2}{2x^2+7x+6}\)
\(=\lim\limits_{x\rightarrow-2}\dfrac{\left(2-x\right)\left(2+x\right)}{2x^2+4x+3x+6}\)
\(=\lim\limits_{x\rightarrow-2}\dfrac{\left(2-x\right)\left(x+2\right)}{\left(x+2\right)\left(2x+3\right)}\)
\(=\lim\limits_{x\rightarrow-2}\dfrac{2-x}{2x+3}=\dfrac{2-\left(-2\right)}{2\cdot\left(-2\right)+3}=\dfrac{4}{-4+3}=-4\)
b: \(\lim\limits_{x\rightarrow4}\dfrac{2x^2-13x+20}{x^3+64}\)
\(=\lim\limits_{x\rightarrow4}\dfrac{2x^2-8x-5x+20}{\left(x+4\right)\left(x^2-4x+16\right)}\)
\(=\lim\limits_{x\rightarrow4}\dfrac{\left(x-4\right)\left(2x-5\right)}{x^3+64}\)
\(=\dfrac{\left(4-4\right)\left(2\cdot4-5\right)}{4^3+64}=0\)
c: \(\lim\limits_{x\rightarrow-1}\dfrac{2x^2+8x+6}{-2x^2+7x+9}\)
\(=\lim\limits_{x\rightarrow-1}\dfrac{2x^2+2x+6x+6}{-2x^2-2x+9x+9}\)
\(=\lim\limits_{x\rightarrow-1}\dfrac{\left(x+1\right)\left(2x+6\right)}{-2x\left(x+1\right)+9\left(x+1\right)}\)
\(=\lim\limits_{x\rightarrow-1}\dfrac{\left(x+1\right)\left(2x+6\right)}{\left(x+1\right)\left(-2x+9\right)}\)
\(=\lim\limits_{x\rightarrow-1}\dfrac{2x+6}{-2x+9}=\dfrac{2\cdot\left(-1\right)+6}{-2\cdot\left(-1\right)+9}\)
\(=\dfrac{4}{11}\)
Giải phương trình
a)(x+6)/2 + 2(x+17)/2 + 5(x-10)/6 = 2x+6
b)(x+1)/4 - (2x-1)/5 + (2x+1)/2 = (27x+10)/20
c)(x-2)3 + (x-4)3 + (x-7)3 - 3(x-2)(x-4)(x-7) = 0
a)x=-17
b)x=9/10
c)x=4\(\frac{1}{3}\)
tick đi giải chi tiết cho
a)Sử dụng tính chất tỉ lệ thức, có thể biến đổi phương trình như sau
7x+35/3=2x+6/1=>(7x+35)1=3(2x+6)
=>x=-17
b)Sử dụng tính chất tỉ lệ thức, có thể biến đổi phương trình như sau
17x+19/20=27x+10/20=>(17x+19)20=20(27x+10)
c)<=>(x-2)^3+(x-4)^3+(x-7)^3+(-3)(x-2)(x-4)(x-7)=19(3x-13)
=>19(3x-13)=0
rút gọn 57x=247
=>19.3x=19.13
=>3x=13
=>x=13/3
=>x=4\(\frac{1}{3}\)
b)
\(\frac{x+1}{4}-\frac{2x-1}{5}+\frac{2x+1}{2}=\frac{27x+10}{20}\)
<=> \(\frac{5\left(x+1\right)}{20}-\frac{4\left(2x-1\right)}{20}+\frac{10\left(2x+1\right)}{20}=\frac{27x+10}{20}\)
<=> \(5\left(x+1\right)-4\left(2x-1\right)+10\left(2x+1\right)=27x+10\)
<=> \(5x+5-8x+4+20x+10=27x+10\)(Bước này có thể bỏ)
<=> \(10x=-9\)
<=> \(x=-\frac{9}{10}\)
Vậy tập nghiệm của phương trình: S=\(\left(-\frac{9}{10}\right)\) ( thay ngoặc tròn thành ngoặc nhọn )
P/s: Tớ chỉ biết làm như thế thôi!! :)))
1.giải phương trình :
1)1 + 2/x-1 + 1/x+3=x^2+2x-7/x^2+2x-3
2)x/x^2+5x+6=2/x^2+3x+2 (x=3)
3)1/x^2+9x+20 - 1/x^2+8x+12=x^2-2x-33/x^2+8x+15 (x=-5,7)
4)x+5/3x-6 - 1/2=2x-3/2x-4 (x=25/7)
5)x-1/x^3+1 + 2x+3/x^2-x+1=2x+4/x+1 - 2(x=0)
1/ \(1+\frac{2}{x-1}+\frac{1}{x+3}=\frac{x^2+2x-7}{x^2+2x-3}\)
ĐKXĐ: \(\hept{\begin{cases}x-1\ne0\\x+3\ne0\end{cases}}\Leftrightarrow\hept{\begin{cases}x\ne1\\x\ne-3\end{cases}}\)
<=> \(1+\frac{2\left(x+3\right)+x-1}{\left(x-1\right)\left(x+3\right)}=\frac{x^2+2x-3-5}{x^2+2x-3}\)
<=> \(1+\frac{2x+6+x-1}{x^2+2x-3}=1-\frac{5}{x^2+2x-3}\)
<=> \(\frac{3x+5}{x^2+2x-3}+\frac{5}{x^2+2x-3}=1-1\)
<=> \(\frac{3x+5}{x^2+2x-3}+\frac{5}{x^2+2x-3}=0\)
<=> \(\frac{3x+10}{x^2+2x-3}=0\)
<=> \(3x+10=0\)
<=> \(x=-\frac{10}{3}\)