Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
nood
Xem chi tiết
Nguyễn Lê Phước Thịnh
27 tháng 2 2023 lúc 11:09

a: \(\Leftrightarrow\dfrac{3}{x-2}=\dfrac{2x-1}{x-2}-\dfrac{x\left(x-2\right)}{x-2}\)

=>3=2x-1-x^2+2x

=>3=-x^2+4x-1

=>x^2-4x+1+3=0

=>x^2-4x+4=0

=>x=2(loại)

b: =>(x+2)(2x-4)=x(2x+3)

=>2x^2-4x+4x-8=2x^2+3x

=>3x=-8

=>x=-8/3(nhận)

Lê Trần Khánh Nhi
Xem chi tiết
Ngô Dương
Xem chi tiết
Aki Tsuki
29 tháng 3 2018 lúc 20:14

Violympic toán 8

nguyễn vương hải
Xem chi tiết
Minh Hiếu
3 tháng 10 2021 lúc 7:30

a) \(4x\left(a-b\right)+6xy\left(b-a\right)\)

\(=4x\left(a-b\right)-6xy\left(a-b\right)\)

\(=\left(4x-6xy\right)\left(a-b\right)\)

\(=2x\left(2-3y\right)\left(a-b\right)\)

Minh Hiếu
3 tháng 10 2021 lúc 7:39

b) \(\left(6x+3\right)-\left(2x-5\right)\left(2x+1\right)\)

\(=3\left(2x+1\right)-\left(2x-5\right)\left(2x+1\right)\)

\(=\left(3-2x+5\right)\left(2x+1\right)\)

\(=\left(8-2x\right)\left(2x+1\right)\)

\(=2\left(4-x\right)\left(2x+1\right)\)

Nguyễn Lê Phước Thịnh
4 tháng 10 2021 lúc 1:16

g: \(\left(3x-1\right)^2-\left(x+3\right)^2\)

\(=\left(3x-1-x-3\right)\left(3x-1+x+3\right)\)

\(=\left(2x-4\right)\left(4x+2\right)\)

\(=4\left(x-2\right)\left(2x+1\right)\)

quoc anh
Xem chi tiết
Bùi Minh Anh
25 tháng 7 2017 lúc 19:36

a, \(x^3-4x^2+12x-27\) \(=x^3-3x^2-x^2+3x+9x-27\)

\(x^2\left(x-3\right)-x\left(x-3\right)+9\left(x-3\right)\) \(=\left(x-3\right)\left(x^2-x+9\right)\)

b, \(x^3+2x^2+2x+1\) \(=x^3+x^2+x^2+x+x+1\)

\(x^2\left(x+1\right)+x\left(x+1\right)+x+1=\) \(\left(x+1\right)\left(x^2+x+1\right)\)

c, \(x^4-2x^3+2x-1=\) \(x^4-x^3-x^3+x^2-x^2+x+x-1\)

\(x^3\left(x-1\right)-x^2\left(x-1\right)-x\left(x-1\right)+x-1\)

\(\left(x-1\right)\left(x^3-x^2-x+1\right)\)

d, \(x^4+2x^3+2x^2+2x+1=\) \(x^4+x^3+x^3+x^2+x^2+x+x+1\)

\(x^3\left(x+1\right)+x^2\left(x+1\right)+x\left(x+1\right)+x+1\)

\(\left(x+1\right)\left(x^3+x^2+x+1\right)\)

l҉o҉n҉g҉ d҉z҉
25 tháng 7 2017 lúc 19:42

Ta có : x3 - 4x2 + 12x - 27

= (x3 - 27) - (4x2 - 12x)

= (x - 3)(x2 + 3x + 9) - 4x(x - 3)

= (x - 3)(x2 + 3x + 9 - 4x)

= (x - 3)(x2 - x + 9)

b) https://olm.vn/hoi-dap/question/1004349.html tôi tự coppy tôi

thimyha vu
Xem chi tiết
Pham Trong Bach
Xem chi tiết
Cao Minh Tâm
10 tháng 2 2018 lúc 9:05

a) 2(x + 3)(x – 4) = (2x – 1)(x + 2) – 27

⇔ 2(x2 – 4x + 3x – 12) = 2x2 + 4x – x – 2 – 27

⇔ 2x2 – 2x – 24 = 2x2 + 3x – 29

⇔ -2x – 3x = 24 – 29

⇔ - 5x = - 5 ⇔ x = -5/-5 ⇔ x = 1

Tập nghiệm của phương trình : S = {1}

b) x2 – 4 – (x + 5)(2 – x) = 0

⇔ x2 – 4 + (x + 5)(x – 2) = 0 ⇔ (x – 2)(x + 2 + x + 5) = 0

⇔ (x – 2)(2x + 7) = 0 ⇔ x – 2 = 0 hoặc 2x + 7 = 0

⇔ x = 2 hoặc x = -7/2

Tập nghiệm của phương trình: S = {2; -7/2 }

c) ĐKXĐ : x – 2 ≠ 0 và x + 2 ≠ 0 (khi đó : x2 – 4 = (x – 2)(x + 2) ≠ 0)

⇔ x ≠ 2 và x ≠ -2

Quy đồng mẫu thức hai vế :

Khử mẫu, ta được : x2 + 4x + 4 – x2 + 4x – 4 = 4

⇔ 8x = 4 ⇔ x = 1/2( thỏa mãn ĐKXĐ)

Tập nghiệm của phương trình : S = {1/2}

d) ĐKXĐ : x – 1 ≠ 0 và x + 3 ≠ 0 (khi đó : x2 + 2x – 3 = (x – 1)(x + 3) ≠ 0)

⇔ x ≠ 1 và x ≠ -3

Quy đồng mẫu thức hai vế :

Khử mẫu, ta được : x2 + 3x + x + 3 – x2 + x – 2x + 2 + 4 = 0

⇔ 3x = -9 ⇔ x = -3 (không thỏa mãn ĐKXĐ)

Tập nghiệm của phương trình : S = ∅

Phan Nghĩa
15 tháng 5 2021 lúc 20:34

\(2\left(x+3\right)\left(x-4\right)=\left(2x-1\right)\left(x+2\right)-27\)

\(< =>2\left(x^2-x-12\right)=2x^2+3x-2-27\)

\(< =>2x^2-2x-24=2x^2+3x-2-27\)

\(< =>5x=-24+29=5\)

\(< =>x=\frac{5}{5}=1\)

Khách vãng lai đã xóa
Phan Nghĩa
15 tháng 5 2021 lúc 20:45

\(x^2-4-\left(x+5\right)\left(2-x\right)=0\)

\(< =>\left(x-2\right)\left(x+2\right)+\left(x+5\right)\left(x-2\right)=0\)

\(< =>\left(x-2\right)\left(x+2+x+5\right)=0\)

\(< =>\left(x-2\right)\left(2x+7\right)=0\)

\(< =>\orbr{\begin{cases}x-2=0\\2x+7=0\end{cases}}< =>\orbr{\begin{cases}x=2\\x=-\frac{7}{2}\end{cases}}\)

Khách vãng lai đã xóa
viên cổn cổn
Xem chi tiết
Hồng Chu
Xem chi tiết
Nguyễn Đặng Phương Thảo
Xem chi tiết
Phước Nguyễn
2 tháng 11 2015 lúc 11:07

c. \(x^4-2x^3-2x^2-2x-3=x^3\left(x-3\right)+x^2\left(x-3\right)+x\left(x-3\right)+x-3\)

\(=\left(x-3\right)\left(x^3+x^2+x+1\right)=\left(x-3\right)\left(x+1\right)\left(x^2+1\right)\)