Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
Nguyễn Thị Ngọc Nhi
Xem chi tiết
Kiều Vũ Linh
8 tháng 11 2023 lúc 10:38

a) Đặt A = \(6^5.5-3^5\)

\(=\left(2.3\right)^5.5-3^5\)

\(=2^5.3^5.5-3^5\)

\(=3^5.\left(2^5.5-1\right)\)

\(=3^5.\left(32.5-1\right)\)

\(=3^5.159\)

\(=3^5.3.53⋮53\)

Vậy \(A⋮53\)

b) Đặt \(B=2+2^2+2^3+...+2^{120}\)

\(=\left(2+2^2\right)+\left(2^3+2^4\right)+...+\left(2^{119}+2^{120}\right)\)

\(=2.\left(1+2\right)+2^3.\left(1+2\right)+...+2^{119}.\left(1+2\right)\)

\(=2.3+2^3.3+...+2^{119}.3\)

\(=3.\left(2+2^3+...+2^{59}\right)⋮3\)

Vậy \(B⋮3\)

\(B=\left(2+2^2+2^3\right)+\left(2^4+2^5+2^6\right)+...+\left(2^{118}+2^{119}+2^{120}\right)\)

\(=2.\left(1+2+2^2\right)+3^4.\left(1+2+2^2\right)+...+2^{118}.\left(1+2+2^2\right)\)

\(=2.7+2^4.7+...+2^{118}.7\)

\(=7.\left(2+2^4+...+2^{118}\right)⋮7\)

Vậy \(B⋮7\)

\(B=\left(2+2^2+2^3+2^4+2^5\right)+\left(2^6+2^7+2^8+2^9+2^{10}\right)\)

\(+...+\left(2^{116}+2^{117}+2^{118}+2^{119}+2^{120}\right)\)

\(=2.\left(1+2+2^2+2^3+2^4\right)+2^6.\left(1+2+2^2+2^3+2^4\right)\)

\(+2^{116}.\left(1+2+2^2+2^3+2^4\right)\)

\(=2.31+2^6.31+...+2^{116}.31\)

\(=31.\left(2+2^6+...+2^{116}\right)⋮31\)

Vậy \(B⋮31\)

\(B=\left(2+2^2+2^3+2^4+2^5+2^6+2^7+2^8\right)+\left(2^9+2^{10}+2^{11}+2^{12}+2^{13}+2^{14}+2^{15}+2^{16}\right)\)

\(+...+\left(2^{113}+2^{114}+2^{115}+2^{116}+2^{117}+2^{118}+2^{119}+2^{120}\right)\)

\(=2.\left(1+2+2^2+2^3+2^4+2^5+2^6+2^7\right)+2^9.\left(1+2+2^2+2^3+2^4+2^5+2^6+2^7\right)\)

\(+...+2^{113}.\left(1+2+2^2+2^3+2^4+2^5+2^6+2^7\right)\)

\(=2.255+2^9.255+...+2^{113}.255\)

\(=255.\left(2+2^9+...+2^{113}\right)\)

\(=17.15.\left(2+2^9+...+2^{113}\right)⋮17\)

Vậy \(B⋮17\)

Kiều Vũ Linh
8 tháng 11 2023 lúc 10:45

c) Đặt C = \(3^{4n+1}+2^{4n+1}\)

Ta có:

\(3^{4n+1}=\left(3^4\right)^n.3\)

\(2^{4n}=\left(2^4\right)^n.2\)

\(3^4\equiv1\left(mod10\right)\)

\(\Rightarrow\left(3^4\right)^n\equiv1^n\left(mod10\right)\equiv1\left(mod10\right)\)

\(\Rightarrow3^{4n+1}\equiv\left(3^4\right)^n.3\left(mod10\right)\equiv1.3\left(mod10\right)\equiv3\left(mod10\right)\)

\(\Rightarrow\) Chữ số tận cùng của \(3^{4n+1}\) là \(3\)

\(2^4\equiv6\left(mod10\right)\)

\(\Rightarrow\left(2^4\right)^n\equiv6^n\left(mod10\right)\equiv6\left(mod10\right)\)

\(\Rightarrow2^{4n+1}\equiv\left(2^4\right)^n.2\left(mod10\right)\equiv6.2\left(mod10\right)\equiv2\left(mod10\right)\)

\(\Rightarrow\) Chữ số tận cùng của \(2^{4n+1}\) là \(2\)

\(\Rightarrow\) Chữ số tận cùng của C là 5

\(\Rightarrow C⋮5\)

Kiều Vũ Linh
8 tháng 11 2023 lúc 10:53

d) Đặt \(D=75+\left(4^{2006}+4^{2005}+4^{2004}+...+1\right).25\)

Đặt \(E=4^{2006}+4^{2005}+4^{2004}+...+1\)

\(\Rightarrow4E=4^{2007}+4^{2006}+4^{2005}+...+4\)

\(\Rightarrow3E=4E-E\)

\(=\left(4^{2007}+4^{2006}+4^{2005}+...+4\right)-\left(4^{2006}+4^{2005}+4^{2004}+...+1\right)\)

\(=4^{2007}-1\)

\(\Rightarrow E=\dfrac{\left(4^{2007}-1\right)}{3}\)

\(\Rightarrow D=75+\dfrac{4^{2007}-1}{3}.25\)

Ta có:

\(4^{2007}=\left(4^2\right)^{1003}.4\)

\(4^2\equiv6\left(mod10\right)\)

\(\left(4^2\right)^{1003}\equiv6^{1003}\left(mod10\right)\equiv6\left(mod10\right)\)

\(\Rightarrow4^{2007}\equiv\left(4^2\right)^{1003}.4\left(mod10\right)\equiv6.4\left(mod10\right)\equiv4\left(mod10\right)\)

\(\Rightarrow\) Chữ số tận cùng của \(4^{2007}\) là 4

Nguyễn Thị MInh Huyề
Xem chi tiết
Lê Tài Bảo Châu
27 tháng 6 2019 lúc 10:55

A chia hết cho 2 sẵn rồi 

CM A chia hết cho 30:

\(2+2^2+2^3+...+2^{100}\)

\(=\left(2+2^2+2^3+2^4\right)+2^4\left(2+2^2+2^3+2^4\right)+....+2^{96}\left(2+2^2+2^3+2^4\right)\)

\(=30.\left(1+2^4+...+2^{96}\right)⋮30\)

Lê Tài Bảo Châu
27 tháng 6 2019 lúc 10:56

Gợi ý;

B chia hết cho 5 sắn rồi

chia hết cho 6 nhóm 2 số vào

Chi hết cho 31 nhóm 3 số vào

Mike
27 tháng 6 2019 lúc 11:01

A = 2 + 2^2 + 2^3 + ... + 2^100

vì tất cả các số hạng đều chia hết cho 2 

=> A chia hết cho 2

vậy_

Nguyễn Thị Khánh Linh
Xem chi tiết
Nguyễn Nam
9 tháng 11 2017 lúc 19:23

1)

a)\(B=3+3^3+3^5+3^7+.....+3^{1991}\)

\(\Leftrightarrow B=3\left(1+3^2+3^4+3^6+.....+3^{1990}\right)\)

\(3\left(1+3^2+3^4+3^6+.....+3^{1990}\right)\)chia hết cho 3 nên \(B⋮3\)

\(B=3+3^3+3^5+3^7+.....+3^{1991}\)

\(\Leftrightarrow B=\left(3+3^3+3^5+3^7\right)+.....+\left(3^{1988}+3^{1989}+3^{1990}+3^{1991}\right)\)

\(\Leftrightarrow B=3\left(1+3^2+3^4+3^6\right)+.....+3^{1988}\left(1+3^2+3^4+3^6\right)\)

\(\Leftrightarrow B=3.820+.....+3^{1988}.820\)

\(\Leftrightarrow B=3.20.41+.....+3^{1988}.20.41\)

\(3.20.41+.....+3^{1988}.20.41\) chia hết cho 41 nên \(B⋮41\)

Mật khẩu trên 6 kí tự
Xem chi tiết
Trần Đặng Phan Vũ
28 tháng 1 2018 lúc 21:16

a) \(5+5^2+5^3+....+5^{100}\)

đặt \(A=5+5^2+5^3+....+5^{100}\) ( \(A\) có \(100\) số hạng )

\(A=\left(5+5^2\right)+\left(5^3+5^4\right)+....+\left(5^{99}+5^{100}\right)\) ( có \(100\div2=50\) nhóm )

\(A=5\left(1+5\right)+5^3\left(1+5\right)+....+5^{99}\left(1+5\right)\)

\(A=5.6+5^3.6+....+5^{99}.6\)

\(A=6\left(5+5^3+....+5^{99}\right)\)

vì \(6⋮6\Rightarrow6\left(5+5^3+....+5^{99}\right)⋮6\Rightarrow A⋮6\)

b) \(2+2^2+2^3+....+2^{100}\)

đặt \(B=2+2^2+2^3+....+2^{100}\) ( \(B\) có \(100\) số hạng )

\(B=\left(2+2^2+2^3+2^4+2^5\right)+.....+\left(2^{96}+2^{97}+2^{98}+2^{99}+2^{100}\right)\) ( có \(100\div5=20\) nhóm )

\(B=2\left(1+2+2^2+2^3+2^4\right)+....+2^{96}\left(1+2+2^2+2^3+2^4\right)\)

\(B=2.31+....+2^{96}.31\)

\(B=31\left(2+...+2^{96}\right)\)

vì \(31⋮31\Rightarrow31\left(2+...+2^{96}\right)\Rightarrow B⋮31\)

nguyen tien dung
28 tháng 1 2018 lúc 20:59

a) 5+5^2+5^3..+5^100

=(5+5^2)+(5^3+5^4)+....+(5^99+5^100)

=5.(1+5)+5^3.(1+5)+....+5^99.(1+5)

=5.6+5^3.6+.....+5^99.6

=6.(5+5^3+.....+5^99):6

nguyen tien dung
28 tháng 1 2018 lúc 21:00

cau b tuong tu nhe ban

Phan Ngọc Anh
Xem chi tiết
Tạ Lương Minh Hoàng
18 tháng 10 2015 lúc 17:13

(1+23)+(2+24)+...+(28+211)

9+2(1+23)+...+28(1+23)

9(1+2+...+28) chia hết cho 9

=>( 2^0+2^1+2^2 + ...+2^11) chia hết cho 9

 

Tạ Lương Minh Hoàng
18 tháng 10 2015 lúc 17:02

c)(5+52)+(53+54)+...+(599+5100)

5(1+5)+53(1+5)+...+599(1+5)

6(5+53+...+599) chia hết cho 3

Junmiu Orina
Xem chi tiết
Chế Nguyễn Quỳnh Châu
28 tháng 10 2016 lúc 11:53

a, Ta co : M= ( 1 +4 + 4) + ( 43 + 44 + 45 ) +.......................+ ( 42010 + 42011 +42012 )

              M = 1. (1+4+16 ) +43. (1+4+16 ) +.........................+ 42010. ( 1+4 +16 

              M = 1, 21 + 43. 21 +..............................................+ 42010 .21

              M= 21.(1+43+.................................... + 42010 ) CHIA HẾT 21

​TƯƠNG TƯ

Nguyễn Duẩn
Xem chi tiết
Tiến Dũng Trương
28 tháng 10 2023 lúc 15:43

a) Ta có:

\( A = 5+5^2+5^3+\ldots+5^{100} \)

Để chứng minh A chia hết cho 5, ta xét tổng S = \( 5+5^2+5^3+\ldots+5^{100} \) (mod 5).

Ta thấy rằng \( 5 \) chia hết cho 5, \( 5^2 \) chia hết cho 5, \( 5^3 \) chia hết cho 5, và tiếp tục như vậy cho tới \( 5^{100} \).

Vì vậy, ta có: \( S \equiv 0+0+0+\ldots+0 \equiv 0 \) (mod 5).

Do đó, A chia hết cho 5.

Để chứng minh A không chia hết cho 25, ta xét tổng T = \( 5+5^2+5^3+\ldots+5^{100} \) (mod 25).

Ta thấy rằng \( 5 \) không chia hết cho 25, \( 5^2 \) không chia hết cho 25, \( 5^3 \) không chia hết cho 25, và tiếp tục như vậy cho tới \( 5^{100} \).

Vì vậy, ta có: \( T \equiv 5+0+0+\ldots+0 \equiv 5 \) (mod 25).

Do đó, A không chia hết cho 25.

b) Ta có:

\( B = 5+5^2+5^3+\ldots+5^{20} \)

Để chứng minh B chia hết cho 6, ta xét tổng U = \( 5+5^2+5^3+\ldots+5^{20} \) (mod 6).

Ta thấy rằng \( 5 \) chia hết cho 6, \( 5^2 \) không chia hết cho 6, \( 5^3 \) không chia hết cho 6, \( 5^4 \) chia hết cho 6, và tiếp tục như vậy cho tới \( 5^{20} \).

Vì vậy, ta có: \( U \equiv 5+1+1+\ldots+1 \equiv 5 \) (mod 6).

Do đó, B chia hết cho 6.

c) Ta có:

\( C = 5+5^2+5^3+\ldots+5^{2022}+5^{2023} \)

Để chứng minh C không chia hết cho 6, ta xét tổng V = \( 5+5^2+5^3+\ldots+5^{2022}+5^{2023} \) (mod 6).

Ta thấy rằng \( 5 \) chia hết cho 6, \( 5^2 \) không chia hết cho 6, \( 5^3 \) không chia hết cho 6, \( 5^4 \) chia hết cho 6, và tiếp tục như vậy cho tới \( 5^{2022} \) và \( 5^{2023} \).

Vì vậy, ta có: \( V \equiv 5+1+1+\ldots+1 \equiv 2 \) (mod 6).

Do đó, C không chia hết cho 6.

d) Ta có:

\( D = 1+2+2^2+2^3+\ldots+2^{2021} \)

Để chứng minh D chia hết cho 7, ta xét tổng W = \( 1+2+2^2+2^3+\ldots+2^{2021} \) (mod 7).

Ta thấy rằng \( 2 \) không chia hết cho 7, \( 2^2 \) chia hết cho 7, \( 2^3 \) không chia hết cho 7, \( 2^4 \) không chia hết cho 7, \( 2^5 \) không chia hết cho 7, \( 2^6 \) chia hết cho 7, và tiếp tục

mong mn cho minh vai xu :)))))))))))))))))))))))))))))))))

Nguyễn Duẩn
28 tháng 10 2023 lúc 16:03

bạn Tiến Dũng Trương lm sai r

Nguyễn Thị Thương Hoài
28 tháng 10 2023 lúc 17:37

a, A = 5 + 52 + 53 + ... + 5100

    A = 5. ( 1 + 5 + ...+ 599)

    5 ⋮ 5 ⇒A =  5.(1 + 5 + ...+ 599) ⋮ 5 (1) 

A  = 5 + 52 + 53 + ... + 5100

A  = 5 + 52.( 1 + 5 + 52 + ... + 598)

A = 5 + 25 . ( 1 + 5 + 5+...+ 598)

Vì 25 ⋮ 25 nên 25.(1 + 5 + 52 +... + 598) ⋮ 25 

5 không chia hết cho 25 nên 

A = 5 + 25.( 1 + 5 +...+ 598) không chia hết cho 25 (2)

Kết hợp (1) và (2) ta có:

A ⋮ 5 nhưng không chia hết cho 25 (đpcm)

 

 

 

  

   

Nguyễn Nhật Minh
Xem chi tiết
toi la ke bi an
26 tháng 10 2019 lúc 18:45

có ssh từ 1-100 là:

(100-1):1+1=100(số)

giá trị của s là:

(100+1)*100:2=5050

vì 5050 có chữ số tận cùng là 0 =>s chia hết cho 2 và 5

Khách vãng lai đã xóa
Đinh Văn Dũng
Xem chi tiết
nguyen thu phuong
5 tháng 10 2017 lúc 20:05

5 + 52 + 53 + ... + 5100

1.Số các số hạng của dãy phép tính trên là:

(100-1):1+1 = 100 (số hạng)

Mỗi chữ số trên đều là số lẻ

=> Số lẻ + số lẻ = số chẵn

Mà có 100 số hạng => có tất cả 50 cặp.

Từ đó ta có thể biết là dãy phép tính trên chia hết cho 2.

2. Chắc chắn dãy số trên chia hết cho 5, sở dĩ nó được tạo nên bảo các lũy thừa có cơ số là 5, hay tất cả các lũy thừa ấy điều chia hết cho 5. Sử dụng tính chất chia hết của một tổng ta thấy dãy số trên chắc chắn chia hết cho 5.

=> Dãy số trên chia hết cho 2 và 5, hay nói cách khác là chia hết cho 10.

Đào Tiến Đạt
5 tháng 10 2017 lúc 19:55

có số các số là:(100-2+1)+2=101

5 mũ mấy vẫn có tận cùng là 5

tận cùng của A là :101 x 5=505      ( tận cùng số đó là 5 chứ ko phải 505)

=> A chia hết cho 5

tớ nghĩ nó ko chia hết cho 2 vì tận cùng là 5

Đào Tiến Đạt
5 tháng 10 2017 lúc 21:09

tớ ko biết cậu nhầm đề ko nhưng đề mà tớ thấy là

5+52+52+53+54+....+5100

Phương Mĩ Linh
Xem chi tiết