tìm x, y là số nguyên biết:
a)6xy+9y+10x=2
b)3xy-2x-5y=6
Tìm x,y nguyên dương sao cho
a)6xy+10x+9y=2
b)2xy+9x-11y=21
b)3xy-2x-5y=7
tìm x,y nguyên dương sao cho
a)6xy+10x+9y=2
b)2xy+9x-11y=21
c)3xy-2x-5y=7
ai giúp mk đk câu nào thì cứ giúp nha.
a)\(\left(2x+3\right)\left(3y+5\right)=17\)
b) \(\left(2y+9\right)\left(11-2x\right)=57\)
c) \(\left(3x-5\right)\left(3y-2\right)=31\)
Lần lượt xét từng trường hợp cho mỗi câu .
Bài1: Tìm x,y nguyên sao cho
a) x(y-3)=15 b)xy-2y+3(x-2)=7 c)xy-3x+y=15
Bai2: Tìm x,y nguyên dương sao cho
a)6xy+10x+9y=2 b)2xy+9x-11y=21 c)3xy-2x-5y=7
Tìm GTNN của biểu thức sau:
M=2x^2+9y^2-6xy-6x-12y+2028
N=x^2-4xy+5y^2+10x-22y+28
Giúp mk với
\(M=2x^2+9y^2-6xy-6x-12y+2028\\ =3\left(x^2-2xy+y^2\right)-\left(x^2+6x+9\right)+6\left(y^2-2y+1\right)+2025\\ =\left(x-y\right)^2-\left(x-3\right)^2+6\left(y-1\right)^2+2025\ge2025\)
Dấu \("="\Leftrightarrow\left\{{}\begin{matrix}x=y\\x=3\\y=1\end{matrix}\right.\) (vô lí) nên dấu \("="\) ko thể xảy ra
\(N=x^2-4xy+5y^2+10x-22y+28\\ =\left(x^2+4y^2+25-4xy-20y+10x\right)+\left(y^2-2y+1\right)+2\\=\left(x-2y+5\right)^2+\left(y-1\right)^2+2\ge2\)
Dấu \("="\Leftrightarrow\left\{{}\begin{matrix}x-2y=5\\y=1\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x=7\\y=1\end{matrix}\right.\)
\(M=2x^2+9y^2-6xy-6x-12y+2028=\left(x+2\right)^2-6y\left(x+2\right)+9y^2+\left(x-5\right)^2+1999=\left(x+2-3y\right)^2+\left(x-5\right)^2+2019\ge1999\)
\(ĐTXR\Leftrightarrow\left\{{}\begin{matrix}x=5\\y=\dfrac{7}{3}\end{matrix}\right.\)
\(N=x^2-4xy+5y^2+10x-22y+28=\left(x+5\right)^2-4y\left(x+5\right)+4y^2+\left(y-1\right)^2+2=\left(x+5-2y\right)^2+\left(y-1\right)^2+2\ge2\)
\(ĐTXR\Leftrightarrow\left\{{}\begin{matrix}x=-3\\y=1\end{matrix}\right.\)
Bài 1: Tìm giá trị nhỏ nhất của các biểu thức sau
8) H = x⁶ – 2x³ + x² – 2x + 2
9)M =2x² + 9y² – 6xy – 6x – 12y + 2028
10) N = x² – 4xy + 5y² + 10x – 22y + 28
H=\(x^6-2x^3+x^2-2x+2\)
\(=x^6+2x^5+3x^4+2x^2-2x^5-4x^4-6x^3-4x^2-4x+x^4+2x^3+3x^2+2x+2\)
\(=x^2\left(x^4+2x^3+3x^2+2\right)-2x\left(x^4+2x^3+3x^2+2\right)+\left(x^4+2x^3+3x^2+2\right)\)
\(=\left(x^2-2x+1\right)\left(x^4+2x^3+3x^2+2\right)\)
\(=\left(x-1\right)^2\left(x^2+1\right)\left(x^2+2x+2\right)\)
\(=\left(x-1\right)^2\left(x^2+1\right)\left[\left(x+1\right)^2+1\right]\text{≥}0\)
Vì \(\left\{{}\begin{matrix}\left(x-1\right)^2\text{≥}0\\\left(x^2+1\right)\text{≥}1\\\left(x+1\right)^2+1\text{≥}1\end{matrix}\right.\)
⇒ MinH=0 ⇔ \(x=1\)
Tìm các số nguyên x,y thoả mãn: 3xy+2x-5y=6
Lời giải:
$3xy+2x-5y=6$
$x(3y+2)-5y=6$
$3x(3y+2)-15y=18$
$3x(3y+2)-5(3y+2)=8$
$(3y+2)(3x-5)=8$
Đến đây lập bảng xét giá trị thôi bạn.
Tìm x,y nguyên dương sao cho
6xy+10x+9y=2
6xy+10x+9y=2
<=>2x(3y+5)+9y+15-17=0
<=>2x(3y+5)+3(3y+5)=17
<=>(2x+3)(3y+5)=17
tới đây bạn lập bảng là xong
tìm x,y nguyên dương sao cho
6xy+10x+9y=2
Ta có: \(6xy+10x+9y-2=0\Leftrightarrow2x\left(3y+5\right)+9y+15-17=0\)
\(\Leftrightarrow2x\left(3y+5\right)+3\left(3y+5\right)=17\Leftrightarrow\left(2x+3\right)\left(3y+5\right)=17\)
Ta có bảng sau:
Vậy không tồn tại x, y nguyên dương thỏa mãn bài toán.
Tìm các cặp số nguyên x, y thỏa mãn: 3xy+2x-5y=6
\(3xy+2x-5y=6\)
\(\Leftrightarrow9xy+6x-15y=18\)
\(\Leftrightarrow\left(9xy+6x\right)-\left(15y+10\right)=8\)
\(\Leftrightarrow3x.\left(3y+2\right)-5\left(3y+2\right)=8\)
\(\Leftrightarrow\left(3x-5\right)\left(3y+2\right)=8\)
Do x,y nguyên nên ta có bảng sau
3x - 5 | 1 | 8 | -1 | -8 | 4 | 2 | -4 | -2 |
3y + 2 | 8 | 1 | -8 | -1 | 2 | 4 | -2 | -4 |
x | 2 | \(\frac{13}{3}\)( loại ) | \(\frac{4}{3}\)( loại ) | -1 | 3 | \(\frac{7}{3}\)( loại ) | \(\frac{1}{3}\)( loại ) | 1 |
y | 2 | \(-\frac{1}{3}\)( loại ) | \(-\frac{10}{3}\)( loại ) | -1 | 0 | \(\frac{2}{3}\)( loại ) | \(-\frac{4}{3}\)( loại ) | -2 |
Bạn tự KL nhé