x,y x xy,x = xy,xy
Tìm x và y .
Tìm x và y biết x,y . xy,x = xy,xy
x,y . xy,x = xy,xy
0,1 * xy,x = 1,01
xy,x= 1,01
x= 1 ; y=0
Tìm x và y, biết:
x,y × xy,x = xy,xy
x,y . x,y =xy,xy
xy : 10 x xyx :10 = xyxy : 100
xy : 10 x xyx = xyxy :100 x 10
xy : 10 x xyx = xyxy :10
xy x xyx = xyxy :10 x 10
xy x xyx = xyxy
xyx = xyxy : xy
xyx = 101
=> x=1, y=0
4786569890-------------------88888 777 66666698-0=0k;,. \dưqdc'qac
szX s sđfvừgeggggêgfggggWWQEWR
Tìm x và y biết : x,y . xy,x= xy,xy
Tìm x và y, biết:
x,y × xy,x = xy,xy
Cho x,y là các số thực dương thỏa mãn điều kiện x+y-6xy=0 và xy≠1. Tìm giá trị lớn nhất của
M=\(\dfrac{\dfrac{x+1}{xy+1}+\dfrac{xy+x}{1-xy}+1}{1-\dfrac{xy+x}{xy-1}-\dfrac{x+1}{xy+1}}\)
\(6xy=x+y\ge2\sqrt[]{xy}\Rightarrow\sqrt{xy}\ge\dfrac{1}{3}\Rightarrow xy\ge\dfrac{1}{9}\Rightarrow\dfrac{1}{xy}\le9\)
\(M=\dfrac{\dfrac{x+1}{xy+1}+\dfrac{xy+x}{1-xy}+1}{1+\dfrac{xy+x}{1-xy}-\dfrac{x+1}{xy+1}}=\dfrac{\dfrac{x+1}{xy+1}+\dfrac{x+1}{1-xy}}{\dfrac{x+1}{1-xy}-\dfrac{x+1}{xy+1}}=\dfrac{\dfrac{1}{1-xy}+\dfrac{1}{1+xy}}{\dfrac{1}{1-xy}-\dfrac{1}{1+xy}}\)
\(M=\dfrac{1+xy+1-xy}{1+xy-1+xy}=\dfrac{2}{2xy}=\dfrac{1}{xy}\le9\)
Dấu "=" xảy ra khi \(x=y=\dfrac{1}{3}\)
Cho x,y là các số thực dương thỏa mãn điều kiện x+y-6xy=0 và xy\(\ne\)1. Tìm giá trị lớn nhất của M=\(\dfrac{\dfrac{x+1}{xy+1}+\dfrac{xy+x}{1-xy}+1}{1-\dfrac{xy+x}{xy-1}-\dfrac{x+1}{xy+1}}\)
biết : x,y x xy,x = xy,xy . Hãy tìm các chữ số x;y
x,y X xy,x = xy,xy
(x,y X 10) X ( xy,x X 10 ) = xy,xy X 100
xy X xyx = xyxy
xy X xyx = xy X 100 + xy
xy X xyx = 101 X xy
xy X (xyx - 101 ) = 0
xyx = 101
xy = 10
Tìm điều kiện xác định và rút gọn
A=((a^3+b^3)/(a+b)-ab)/((a^2-b^2)+(2b)/(a+b))
M=(x+(y^2-xy)/(x+y))/((x)/(xy+y^2)+(y^2)/(xy-x^2)-(x^2+y^2)/(xy))
Tìm điều kiện xác định và rút gọn
A=((a^3+b^3)/(a+b)-ab)/((a^2-b^2)+(2b)/(a+b))
M=(x+(y^2-xy)/(x+y))/((x)/(xy+y^2)+(y^2)/(xy-x^2)-(x^2+y^2)/(xy))
Bài 5: Tìm x, y biết:
a) xy = x - y
b) x(y+2) + y = 1
c) xy - 7y + 5x = 0 và y >= 3
a: =>xy-x+y=0
=>x(y-1)+y-1=-1
=>(y-1)(x+1)=-1
=>(x+1;y-1) thuộc {(1;-1); (-1;1)}
=>(x,y) thuộc {(0;0); (-2;2)}
b: =>x(y+2)+y-1=0
=>x(y+2)+y+2-3=0
=>(y+2)(x+1)=3
=>(x+1;y+2) thuộc {(1;3); (3;1); (-1;-3); (-3;-1)}
=>(x,y) thuộc {(0;1); (2;-1); (-2;-5); (-4;-3)}
c:
y>=3
=>y+5>=8
=>y(x-7)+5x-35=-35
=>(x-7)(y+5)=-35
mà y+5>=8
nên (y+5;x-7) thuộc (35;-1)
=>(y;x) thuộc {(30;6)}