giải phương trình sau: √(2x - 1) - √(x +1 ) = 2x -4
Giải phương trìnhsau x/2x-6-x/2x+2=2x/(x+1)(x-3) Giải bất phương trình sau 12x+1/12_< 9x+1/3 - 8x+1/4
\(\dfrac{x}{2x-6}-\dfrac{x}{2x+2}=\dfrac{2x}{\left(x+1\right)\left(x-3\right)}\left(ĐKXĐ:x\ne-1,x\ne3\right)\)
\(\Leftrightarrow\dfrac{x}{2\left(x-3\right)}-\dfrac{x}{2\left(x+1\right)}=\dfrac{2x}{\left(x+1\right)\left(x-3\right)}\)
\(\Leftrightarrow\dfrac{x\left(x+1\right)}{2\left(x+1\right)\left(x-3\right)}-\dfrac{x\left(x-3\right)}{2\left(x+1\right)\left(x-3\right)}=\dfrac{2x\cdot2}{2\left(x+1\right)\left(x-3\right)}\)
\(\Rightarrow x\left(x+1\right)-x\left(x-3\right)=4x\)
\(\Leftrightarrow x^2+x-x^2+3x=4x\)
\(\Leftrightarrow x^2+x-x^2+3x-4x=0\)
\(\Leftrightarrow0x=0\)
Phương trình có vô số nghiệm , trừ x = -1,x = 3
Vậy ...
\(\dfrac{12x+1}{12}< \dfrac{9x+1}{3}-\dfrac{8x+1}{4}\)
\(\Leftrightarrow12\cdot\dfrac{12x+1}{12}< 12\cdot\dfrac{9x+1}{3}-12\cdot\dfrac{8x+1}{4}\)
\(\Leftrightarrow12x+1< 4\left(9x+1\right)-3\left(8x+1\right)\)
\(\Leftrightarrow12x+1< 36x+4-24x-3\)
\(\Leftrightarrow12x+1< 12x+1\)
\(\Leftrightarrow12x-12x< 1-1\)
\(\Leftrightarrow0x< 0\)
Vậy S = {x | x \(\in R\)}
giải phương trình sau
2x/ 2x - 1 + x/ 2x + 1= 1 + 4/ (2x - 1) * (2x + 1)
\(\frac{2x}{2x-1}+\frac{x}{2x+1}=1+\frac{4}{\left(2x-1\right)\left(2x+1\right)}\)ĐK : \(x\ne\pm\frac{1}{2}\)
\(\Leftrightarrow\frac{2x\left(2x+1\right)+x\left(2x-1\right)}{\left(2x-1\right)\left(2x+1\right)}=\frac{\left(2x-1\right)\left(2x+1\right)+4}{\left(2x-1\right)\left(2x+1\right)}\)
\(\Rightarrow4x^2+2x+2x^2-x=4x^2-1+4\)
\(\Leftrightarrow2x^2+x-3=0\Leftrightarrow\left(2x+3\right)\left(x-1\right)=0\Leftrightarrow x=-\frac{3}{2};x=1\)
Vậy tập nghiệm của pt là S = { -3/2 ; 1 }
Giải các phương trình sau bằng cách đưa về phương trình tích
a) 2x(x-5)+4(x-5)=0
b) 3x-15=2x(x-5)
c) (2x+1)(3x-2)=(5x-8)(2x+1)
d) (4x^2-1+(2x+1)(3x-5)
\(a,2x\left(x-5\right)+4\left(x-5\right)=0\\ \Leftrightarrow\left(x-5\right)\left(2x+4\right)=0\\ \Leftrightarrow\left[{}\begin{matrix}x-5=0\\2x+4=0\end{matrix}\right.\\ \Leftrightarrow\left[{}\begin{matrix}x=5\\2x=-4\end{matrix}\right.\\ \Leftrightarrow\left[{}\begin{matrix}x=5\\x=-2\end{matrix}\right.\)
Vậy \(x\in\left\{5;-2\right\}\)
\(b,3x-15=2x\left(x-5\right)\\ \Leftrightarrow3\left(x-5\right)-2x\left(x-5\right)=0\\ \Leftrightarrow\left(x-5\right)\left(-2x+3\right)=0\\ \Leftrightarrow\left[{}\begin{matrix}x-5=0\\-2x+3=0\end{matrix}\right.\\ \Leftrightarrow\left[{}\begin{matrix}x=5\\2x=3\end{matrix}\right.\\ \Leftrightarrow\left[{}\begin{matrix}x=5\\x=\dfrac{3}{2}\end{matrix}\right.\)
Vậy \(x\in\left\{5;\dfrac{3}{2}\right\}\)
\(c,\left(2x+1\right)\left(3x-2\right)=\left(5x-8\right)\left(2x+1\right)\\ \Leftrightarrow\left(2x+1\right)\left(3x-2\right)-\left(5x-8\right)\left(2x+1\right)=0\\ \Leftrightarrow\left(2x+1\right)\left(3x-2-5x+8\right)=0\\ \Leftrightarrow\left(2x+1\right)\left(-2x+6\right)=0\\ \Leftrightarrow\left[{}\begin{matrix}2x+1=0\\-2x+6=0\end{matrix}\right.\\ \Leftrightarrow\left[{}\begin{matrix}2x=-1\\2x=6\end{matrix}\right.\\ \Leftrightarrow\left[{}\begin{matrix}x=-\dfrac{1}{2}\\x=3\end{matrix}\right.\)
Vậy \(x\in\left\{-\dfrac{1}{2};3\right\}\)
Câu d xem lại đề
bài 2: giải các phương trình sau:
a)1-x/2x^2-4x-1/4x-4=x-1/2x(x-2)-1/2x
Bạn nên viết đề bằng công thức toán (biểu tượng $\sum$ góc trái khung soạn thảo) để được hỗ trợ tốt hơn.
giải phương trình sau:
\(x^4+2x^3+2x^2-2x+1=\left(x^3+x\right)\sqrt{\dfrac{1-x^2}{x}}\)
1) Giải các phương trình sau : a) x-3/x=2-x-3/x+3 b) 3x^2-2x-16=0 2) Giải bất phương trình sau: 4x-3/4>3x-5/3-2x-7/12
\(a,\dfrac{x-3}{x}=\dfrac{x-3}{x+3}\)\(\left(đk:x\ne0,-3\right)\)
\(\Leftrightarrow\dfrac{x-3}{x}-\dfrac{x-3}{x+3}=0\)
\(\Leftrightarrow\dfrac{\left(x-3\right)\left(x+3\right)-x\left(x-3\right)}{x\left(x+3\right)}=0\)
\(\Leftrightarrow x^2-9-x^2+3x=0\)
\(\Leftrightarrow3x-9=0\)
\(\Leftrightarrow3x=9\)
\(\Leftrightarrow x=3\left(n\right)\)
Vậy \(S=\left\{3\right\}\)
\(b,\dfrac{4x-3}{4}>\dfrac{3x-5}{3}-\dfrac{2x-7}{12}\)
\(\Leftrightarrow\dfrac{4x-3}{4}-\dfrac{3x-5}{3}+\dfrac{2x-7}{12}>0\)
\(\Leftrightarrow\dfrac{3\left(4x-3\right)-4\left(3x-5\right)+2x-7}{12}>0\)
\(\Leftrightarrow12x-9-12x+20+2x-7>0\)
\(\Leftrightarrow2x+4>0\)
\(\Leftrightarrow2x>-4\)
\(\Leftrightarrow x>-2\)
Bài 1:giải các phương trình sau:
a) (x-3).(x+7)=0 b) (x-2)^2+(x-2).(x-3)=0 c)x^2-5x+6=0
Bài 2:giải các phương trình chứa ẩn ở mẫu sau:
a)x/x+1-1=3/2x b)4x/x-2-7/x=4
Bài 3:giải phương trình sau
a)2x^2-5x-7=0 b)1/x^2-4+2x/x-2=2x/x+2
giúp mình với,mình đang cần gấp
Mình khuyên bạn thế này :
Bạn nên tách những câu hỏi ra
Như vậy các bạn sẽ dễ giúp
Và cũng có nhiều bạn giúp hơn !
Bài 1.
a) ( x - 3 )( x + 7 ) = 0
<=> x - 3 = 0 hoặc x + 7 = 0
<=> x = 3 hoặc x = -7
Vậy S = { 3 ; -7 }
b) ( x - 2 )2 + ( x - 2 )( x - 3 ) = 0
<=> ( x - 2 )( x - 2 + x - 3 ) = 0
<=> ( x - 2 )( 2x - 5 ) = 0
<=> x - 2 = 0 hoặc 2x - 5 = 0
<=> x = 2 hoặc x = 5/2
Vậy S = { 2 ; 5/2 }
c) x2 - 5x + 6 = 0
<=> x2 - 2x - 3x + 6 = 0
<=> x( x - 2 ) - 3( x - 2 ) = 0
<=> ( x - 2 )( x - 3 ) = 0
<=> x - 2 = 0 hoặc x - 3 = 0
<=> x = 2 hoặc x = 3
Bài 2.
a) \(\frac{x}{x+1}-1=\frac{3}{2}x\)
ĐKXĐ : x khác -1
<=> \(\frac{x}{x+1}-\frac{x+1}{x+1}=\frac{3}{2}x\)
<=> \(\frac{-1}{x+1}=\frac{3x}{2}\)
=> 3x( x + 1 ) = -2
<=> 3x2 + 3x + 2 = 0
Vi 3x2 + 3x + 2 = 3( x2 + x + 1/4 ) + 5/4 = 3( x + 1/2 )2 + 5/4 ≥ 5/4 > 0 ∀ x
=> phương trình vô nghiệm
b) \(\frac{4x}{x-2}-\frac{7}{x}=4\)
ĐKXĐ : x khác 0 ; x khác 2
<=> \(\frac{4x^2}{x\left(x-2\right)}-\frac{7x-14}{x\left(x-2\right)}=\frac{4x^2-8x}{x\left(x-2\right)}\)
=> 4x2 - 7x + 14 = 4x2 - 8x
<=> 4x2 - 7x - 4x2 + 8x = -14
<=> x = -14 ( tm )
Vậy phương trình có nghiệm x = -14
Giải các phương trình sau: a) | 2x - 4 | = ( 1 - x ) b) | 2x + 3 | = 4x + 1 khi x >= 3/2
a: TH1: x>=2
=>2x-4=1-x
=>3x=5
=>x=5/3(loại)
TH2: x<2
=>4-2x=1-x
=>-x=-3
=>x=3(loại)
b: =>2x+3=4x+1
=>-2x=-2
=>x=1(loại)
Giải phương trình sau: \(\dfrac{3x}{2x-4}-\dfrac{1}{x}=\dfrac{2}{x^2-2x}\)
\(\dfrac{3x}{2x-4}-\dfrac{1}{x}=\dfrac{2}{x^2-2x}\left(đk:x\ne0;x\ne2\right)\)
\(\Leftrightarrow\dfrac{3x^2}{2x\left(x-2\right)}-\dfrac{2\left(x-2\right)}{2x\left(x-2\right)}=\dfrac{4}{2x\left(x-2\right)}\)
\(\Leftrightarrow3x^2-2x+4=4\)
\(\Leftrightarrow3x^2-2x=0\)
\(\Leftrightarrow x\left(3x-2\right)=0\)
\(\Leftrightarrow\left[{}\begin{matrix}x=0\\3x-2=0\end{matrix}\right.\)
\(\Leftrightarrow\left[{}\begin{matrix}x=0\left(loại\right)\\x=\dfrac{2}{3}\left(nhận\right)\end{matrix}\right.\)
Vậy nghiệm của PT là \(S=\left\{\dfrac{2}{3}\right\}\)
Với \(x\ne0,x\ne2\)
<=>\(\dfrac{3x}{2\left(x-2\right)}-\dfrac{1}{x}=\dfrac{2}{x\left(x-2\right)}\)
<=>\(\dfrac{3x^2-\left(2\left(x-2\right)\right)}{2x\left(x-2\right)}=\dfrac{4}{2x\left(x-2\right)}\)
<=>\(3x^2-2x+4=4\)
<=>\(3x^2-2x=0\)
<=>\(x\left(3x-2\right)=0\)
<=>\(\left[{}\begin{matrix}x=0\\x=\dfrac{2}{3}\end{matrix}\right.\)
`(3x)/(2x-4) - 1/x = 2/(x^2 - 2x)` (1)
ĐKXĐ: `x ne 2; x ne 0`
`(1) <=> 3x/[2(x-2)] - 1/x = 2/[x(x-2)]`
`<=> (3x^2)/[2x(x-2)] - [1.2(x-2)]/[2x(x-2)] = (2.2)/[2x(x-2)]`
`<=> (3x^2 - 2x +4)/[2x(x-2)] = 4/[2x(x-2)]`
`=> 3x^2 - 2x + 4= 4`
`<=> 3x^2 - 2x = 0`
`<=> x(3x -2) =0`
`<=>`\(\left[ \begin{array}{l}x=0\\3x-2=0\end{array} \right.\)
`<=>` \(\left[ \begin{array}{l}x=0\\x= \dfrac{2}{3}\end{array} \right.\)
Loại trường hợp `x= 0` vì không thỏa mãn ĐKXĐ
Vậy tập nghiệm của phương trình là `S= { 2/3}`
Bài 2: giải phương trình sau
a) \(X^4\)-\(x^2\)-2=0
b) (x+1)\(^4\)-x\(^2\)+2)\(^2\)=0
c)3x\(^2\)-2x-8=0
Bài 3: giải phương trình sau
a) x\(^3\)-0,25=0
b) x\(^4\)+2x\(^3\)+x\(^2\)=0
c) x\(^3\)-1=0
d) 6x\(^2\)-7x+2=0
Mong có người giải giùm xin kẻm ơn :>
Bài 3:
b: \(\Leftrightarrow x^2\left(x+1\right)^2=0\)
hay \(x\in\left\{0;-1\right\}\)
c: \(\Leftrightarrow\left(x-1\right)\left(x^2+x+1\right)=0\)
=>x-1=0
hay x=1
d: \(\Leftrightarrow6x^2-3x-4x+2=0\)
\(\Leftrightarrow\left(2x-1\right)\left(3x-2\right)=0\)
hay \(x\in\left\{\dfrac{1}{2};\dfrac{2}{3}\right\}\)