Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
Lê Hương Giang
Xem chi tiết
Akai Haruma
22 tháng 6 2021 lúc 23:23

Lời giải:

a. ĐKXĐ: $x\geq 4$

PT $\Leftrightarrow \sqrt{(x-4)+4\sqrt{x-4}+4}=2$

$\Leftrightarrow \sqrt{(\sqrt{x-4}+2)^2}=2$

$\Leftrightarrow |\sqrt{x-4}+2|=2$

$\Leftrightarrow  \sqrt{x-4}+2=2$

$\Leftrightarrow \sqrt{x-4}=0$

$\Leftrightarrow x=4$ (tm)

b. ĐKXĐ: $x\in\mathbb{R}$

PT $\Leftrightarrow \sqrt{(2x-1)^2}=\sqrt{(x-3)^2}$

$\Leftrightarrow |2x-1|=|x-3|$

\(\Rightarrow \left[\begin{matrix} 2x-1=x-3\\ 2x-1=3-x\end{matrix}\right.\Rightarrow \left[\begin{matrix} x=-2\\ x=\frac{4}{3}\end{matrix}\right.\)

c.

PT \(\Rightarrow \left\{\begin{matrix} 2x-1\geq 0\\ 2x^2-2x+1=(2x-1)^2\end{matrix}\right.\Leftrightarrow \left\{\begin{matrix} x\geq \frac{1}{2}\\ 2x^2-2x=0\end{matrix}\right.\)

\(\Leftrightarrow \left\{\begin{matrix} x\geq \frac{1}{2}\\ 2x(x-1)=0\end{matrix}\right.\Rightarrow x=1\)

Lê Hương Giang
Xem chi tiết
Nguyễn Lê Phước Thịnh
30 tháng 8 2021 lúc 19:08

a: Ta có: \(\sqrt{1-x^2}=x-1\)

\(\Leftrightarrow1-x^2=x-1\)

\(\Leftrightarrow1-x^2-x+1=0\)

\(\Leftrightarrow x^2+x-2=0\)

\(\Leftrightarrow\left(x+2\right)\left(x-1\right)=0\)

\(\Leftrightarrow\left[{}\begin{matrix}x=-2\left(loại\right)\\x=1\left(nhận\right)\end{matrix}\right.\)

b: Ta có: \(\sqrt{x^2+4x+4}=x-2\)

\(\Leftrightarrow\left|x+2\right|=x-2\)

\(\Leftrightarrow\left[{}\begin{matrix}x+2=x-2\left(x\ge-2\right)\\x+2=2-x\left(x< -2\right)\end{matrix}\right.\Leftrightarrow2x=0\)

hay x=0(loại)

 

Lê Kiều Trinh
Xem chi tiết
Nguyễn Lê Phước Thịnh
18 tháng 12 2021 lúc 15:15

a: \(\Leftrightarrow\left[{}\begin{matrix}2x-3=0\\2x+3=1\end{matrix}\right.\Leftrightarrow x=\dfrac{3}{2}\)

Nguyễn Hoàng Minh
18 tháng 12 2021 lúc 15:26

\(a,ĐK:x\ge\dfrac{3}{2}\\ PT\Leftrightarrow\sqrt{2x-3}\left(\sqrt{2x+3}-1\right)=0\\ \Leftrightarrow\left[{}\begin{matrix}2x-3=0\\\sqrt{2x+3}=1\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=\dfrac{3}{2}\left(tm\right)\\x=-1\left(ktm\right)\end{matrix}\right.\Leftrightarrow x=\dfrac{3}{2}\)

\(b,ĐK:x\ge1\\ PT\Leftrightarrow\sqrt{x-1}\left(\sqrt{x+1}-1\right)=0\\ \Leftrightarrow\left[{}\begin{matrix}x-1=0\\x+1=1\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=1\left(tm\right)\\x=0\left(ktm\right)\end{matrix}\right.\Leftrightarrow x=1\)

Anh Quynh
Xem chi tiết
Phan Nghĩa
20 tháng 4 2022 lúc 21:34

a, \(\dfrac{1}{2}\sqrt{x-5}-\sqrt{4x-20+3}=0\left(dkxd:x\ge5\right)\)

\(< =>\dfrac{\sqrt{x-5}}{2}=\sqrt{4x-17}\)

\(< =>\dfrac{x-5}{4}=4x-17\)

\(< =>x-5=16x-68\)

\(< =>15x=68-5=63\)

\(< =>x=\dfrac{63}{15}=\dfrac{21}{5}\)(ktm)

b, \(\sqrt{2x+1}-2\sqrt{x}+1=0\left(dkxd:x\ge0\right)\)

\(< =>\sqrt{2x+1}+1=2\sqrt{x}\)

\(< =>2x+1+1+2\sqrt{2x+1}=4x\)

\(< =>2x-2\sqrt{2x+1}-2=0\)

\(< =>2x+1-2\sqrt{2x+1}+1-4=0\)

\(< =>\left(\sqrt{2x+1}-1\right)^2=4\)

\(< =>\left\{{}\begin{matrix}\sqrt{2x+1}-1=2\\\sqrt{2x+1}-1=-2\end{matrix}\right.\)

\(< =>\left\{{}\begin{matrix}\sqrt{2x+1}=3\\\sqrt{2x+1}=-1\left(loai\right)\end{matrix}\right.\)

\(< =>2x+1=9< =>2x=8< =>x=4\)(tmdk)

Oriana.su
Xem chi tiết
Nguyễn Hoàng Minh
13 tháng 9 2021 lúc 15:11

\(a,\Leftrightarrow x^2+2x+1+2x+3-2\sqrt{2x+3}+1=0\\ \Leftrightarrow\left(x+1\right)^2+\left(\sqrt{2x+3}-1\right)^2=0\\ \Leftrightarrow\left\{{}\begin{matrix}x=-1\\2x+3=1\end{matrix}\right.\Leftrightarrow x=-1\left(N\right)\)

Nguyễn Hoàng Minh
13 tháng 9 2021 lúc 15:17

\(b,\Leftrightarrow3x^2+3x-2\sqrt{x^2+x}=0\left(x\le-1;x\ge0\right)\\ \Leftrightarrow3x\left(x-1\right)-2\sqrt{x\left(x+1\right)}=0\\ \Leftrightarrow\sqrt{x\left(x+1\right)}\left(3\sqrt{x\left(x-1\right)}-2\right)=0\\ \Leftrightarrow\left[{}\begin{matrix}x\left(x-1\right)=0\\\sqrt{x\left(x-1\right)}=\dfrac{2}{3}\end{matrix}\right.\\ \Leftrightarrow\left[{}\begin{matrix}x=0\\x=1\\x^2-x-\dfrac{4}{9}=0\end{matrix}\right.\\ \Leftrightarrow\left[{}\begin{matrix}x=0\\x=1\\9x^2-9x-4=0\left(1\right)\end{matrix}\right.\)

\(\Delta\left(1\right)=81-4\left(-4\right)\cdot9=225\)

\(\Leftrightarrow\left[{}\begin{matrix}x=0\\x=1\\x=\dfrac{9-15}{18}\\x=\dfrac{9+15}{18}\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=0\left(N\right)\\x=1\left(N\right)\\x=-\dfrac{1}{3}\left(L\right)\\x=\dfrac{4}{3}\left(N\right)\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=0\\x=1\\x=\dfrac{4}{3}\end{matrix}\right.\)

Lê Hương Giang
Xem chi tiết
Yeutoanhoc
28 tháng 6 2021 lúc 20:32

a)ĐK:\(\begin{cases}25x^2-9 \ge 0\\5x+3 \ge 0\\\end{cases}\)

`<=>` \(\begin{cases}(5x-3)(5x+3) \ge 0\\5x+3 \ge 0\\\end{cases}\)

`<=>` \(\begin{cases}\left[ \begin{array}{l}x\ge \dfrac35\\x \le -\dfrac35\end{array} \right.\\\end{cases}\)

`<=>` \(\left[ \begin{array}{l}x=-\dfrac35\\x \ge \dfrac35\end{array} \right.\)

`pt<=>\sqrt{5x+3}(\sqrt{5x-3}-2)=0`

`<=>` \(\left[ \begin{array}{l}5x+3=0\\\sqrt{5x-3}=2\end{array} \right.\) 

`<=>` \(\left[ \begin{array}{l}x=-\dfrac35\\5x-3=4\end{array} \right.\) 

`<=>` \(\left[ \begin{array}{l}x=-\dfrac35\\x=7/5\end{array} \right.\) 

`b)sqrt{x-3}/sqrt{2x+1}=2`

ĐK:\(\begin{cases}x-3 \ge 0\\2x+1>0\\\end{cases}\)

`<=>x>=3`

`pt<=>sqrt{x-3}=2sqrt{2x+1}`

`<=>x-3=8x+4`

`<=>7x=7`

`<=>x=1(l)`

`c)sqrt{x^2-2x+1}+sqrt{x^2-4x+4}=3`

`<=>sqrt{(x-1)^2}+sqrt{(x-2)^2}=3`

`<=>|x-1|+|x-2|=3`

`**x>=2`

`pt<=>x-1+x-2=3`

`<=>2x=6`

`<=>x=3(tm)`

`**x<=1`

`pt<=>1-x+2-x=3`

`<=>3-x=3`

`<=>x=0(tm)`

`**1<=x<=2`

`pt<=>x-1+2-x=3`

`<=>=-1=3` vô lý

Vậy `S={0,3}`

Quoc Tran Anh Le
Xem chi tiết
Hà Quang Minh
30 tháng 9 2023 lúc 23:36

a) \(\sqrt {3{x^2} - 4x - 1}  = \sqrt {2{x^2} - 4x + 3} \)

Bình phương hai vế của phương trình ta được:

\(\begin{array}{l}3{x^2} - 4x - 1 = 2{x^2} - 4x + 3\\ \Leftrightarrow {x^2} = 4\end{array}\)

\( \Leftrightarrow x = 2\) hoặc \(x =  - 2\)

Thay lần lượt các giá trị này vào phương trình đã cho, ta thấy cả 2 giá trị x=2; x=-2 thỏa mãn

Vậy tập nghiệm của phương trình là \(S = \left\{ { - 2;2} \right\}\)

b) \(\sqrt {{x^2} + 2x - 3}  = \sqrt { - 2{x^2} + 5} \)

Bình phương hai vế của phương trình ta được:

\(\begin{array}{l}{x^2} + 2x - 3 =  - 2{x^2} + 5\\ \Leftrightarrow 3{x^2} + 2x - 8 = 0\end{array}\)

\( \Leftrightarrow x =  - 2\) hoặc \(x = \frac{4}{3}\)

Thay lần lượt các giá trị này vào phương trình đã cho, ta thấy chỉ có giá trị \(x = \frac{4}{3}\) thỏa mãn

Vậy tập nghiệm của phương trình là \(x = \frac{4}{3}\)

c) \(\sqrt {2{x^2} + 3x - 3}  = \sqrt { - {x^2} - x + 1} \)

Bình phương hai vế của phương trình ta được:

\(\begin{array}{l}2{x^2} + 3x - 3 =  - {x^2} - x + 1\\ \Leftrightarrow 3{x^2} + 4x - 4\end{array}\)

\( \Leftrightarrow x =  - 2\) hoặc \(x = \frac{2}{3}\)

Thay lần lượt các giá trị này vào phương trình đã cho, ta thấy cả 2 giá trị đều không thỏa mãn.

Vậy phương trình vô nghiệm

d) \(\sqrt { - {x^2} + 5x - 4}  = \sqrt { - 2{x^2} + 4x + 2} \)

Bình phương hai vế của phương trình ta được:

\(\begin{array}{l} - {x^2} + 5x - 4 =  - 2{x^2} + 4x + 2\\ \Leftrightarrow {x^2} + x - 6 = 0\end{array}\)

\( \Leftrightarrow x =  - 3\) hoặc \(x = 2\)

Thay lần lượt các giá trị này vào phương trình đã cho, ta thấy x=2 thỏa mãn.

Vậy nghiệm của phương trình là x = 2.

Quoc Tran Anh Le
Xem chi tiết
Hà Quang Minh
23 tháng 9 2023 lúc 23:41

a) Bình phương hai vế ta được

\(2{x^2} - 3x - 1 = 2x - 3\)

\(\begin{array}{l} \Leftrightarrow 2{x^2} - 5x +2 = 0\\ \Leftrightarrow \left[ \begin{array}{l}x = 2\\x = \frac{1}{2}\end{array} \right.\end{array}\)

Thay các giá trị tìm được vào bất phương trình \(2x - 3 \ge 0\) thì chỉ \(x=2\) thỏa mãn.

Vậy tập nghiệm của phương trình là \(S = \left\{2 \right\}\)

b) Bình phương hai vế ta được

\(\begin{array}{l}4{x^2} - 6x - 6 = {x^2} - 6\\ \Leftrightarrow 3{x^2} - 6x = 0\\ \Leftrightarrow \left[ \begin{array}{l}x = 0\\x = 2\end{array} \right.\end{array}\)

Thay các giá trị tìm được vào bất phương trình \({x^2} - 6 \ge 0\) thì thấy chỉ có nghiệm \(x = 2\)thỏa mãn.

Vậy tập nghiệm của phương trình là \(S = \left\{ 2 \right\}\)

c) \(\sqrt {x + 9}  = 2x - 3\)(*)

Ta có: \(2x - 3 \ge 0 \Leftrightarrow x \ge \frac{3}{2}\)

Bình phương hai vế của (*) ta được:

\(\begin{array}{l}x + 9 = {\left( {2x - 3} \right)^2}\\ \Leftrightarrow 4{x^2} - 12x + 9 = x + 9\\ \Leftrightarrow 4{x^2} - 13x = 0\\ \Leftrightarrow \left[ \begin{array}{l}x = 0\left( {KTM} \right)\\x = \frac{{13}}{4}\left( {TM} \right)\end{array} \right.\end{array}\)

Vậy tập nghiệm của phương trình là \(S = \left\{ {\frac{{13}}{4}} \right\}\)

d) \(\sqrt { - {x^2} + 4x - 2}  = 2 - x\)(**)

Ta có: \(2 - x \ge 0 \Leftrightarrow x \le 2\)

Bình phương hai vế của (**) ta được:

\(\begin{array}{l} - {x^2} + 4x - 2 = {\left( {2 - x} \right)^2}\\ \Leftrightarrow  - {x^2} + 4x - 2 = {x^2} - 4x + 4\\ \Leftrightarrow 2{x^2} - 8x + 6 = 0\\ \Leftrightarrow \left[ \begin{array}{l}x = 1\left( {TM} \right)\\x = 3\left( {KTM} \right)\end{array} \right.\end{array}\)

Vậy tập nghiệm của phương trình là \(S = \left\{ 1 \right\}\)

Quoc Tran Anh Le
Xem chi tiết
Hà Quang Minh
26 tháng 9 2023 lúc 23:23

a) \(\sqrt {11{x^2} - 14x - 12}  = \sqrt {3{x^2} + 4x - 7} \)

\(\begin{array}{l} \Rightarrow 11{x^2} - 14x - 12 = 3{x^2} + 4x - 7\\ \Rightarrow 8{x^2} - 18x - 5 = 0\end{array}\)

\( \Rightarrow x =  - \frac{1}{4}\) và \(x = \frac{5}{2}\)

Thay nghiệm vừa tìm được vào phương trình \(\sqrt {11{x^2} - 14x - 12}  = \sqrt {3{x^2} + 4x - 7} \) ta thấy chỉ có nghiệm \(x = \frac{5}{2}\) thảo mãn phương trình

Vậy nhiệm của phương trình đã cho là \(x = \frac{5}{2}\)

b) \(\sqrt {{x^2} + x - 42}  = \sqrt {2x - 30} \)

\(\begin{array}{l} \Rightarrow {x^2} + x - 42 = 2x - 3\\ \Rightarrow {x^2} - x - 12 = 0\end{array}\)

\( \Rightarrow x =  - 3\) và \(x = 4\)

Thay vào phương trình \(\sqrt {{x^2} + x - 42}  = \sqrt {2x - 30} \)  ta thấy  không có nghiệm nào thỏa mãn

Vậy phương trình đã cho vô nghiệm

c) \(2\sqrt {{x^2} - x - 1}  = \sqrt {{x^2} + 2x + 5} \)

\(\begin{array}{l} \Rightarrow 4.\left( {{x^2} - x - 1} \right) = {x^2} + 2x + 5\\ \Rightarrow 3{x^2} - 6x - 9 = 0\end{array}\)

\( \Rightarrow x =  - 1\) và \(x = 3\)

Thay hai nghiệm trên vào phương trình \(2\sqrt {{x^2} - x - 1}  = \sqrt {{x^2} + 2x + 5} \) ta thấy cả hai nghiệm đếu thỏa mãn phương trình

Vậy nghiệm của phương trình \(2\sqrt {{x^2} - x - 1}  = \sqrt {{x^2} + 2x + 5} \) là \(x =  - 1\) và \(x = 3\)

d) \(3\sqrt {{x^2} + x - 1}  - \sqrt {7{x^2} + 2x - 5}  = 0\)

\(\begin{array}{l} \Rightarrow 3\sqrt {{x^2} + x - 1}  = \sqrt {7{x^2} + 2x - 5} \\ \Rightarrow 9.\left( {{x^2} + x - 1} \right) = 7{x^2} + 2x - 5\\ \Rightarrow 2{x^2} + 7x - 4 = 0\end{array}\)

\( \Rightarrow x =  - 4\) và \(x = \frac{1}{2}\)

Thay hai nghiệm trên vào phương trình \(3\sqrt {{x^2} + x - 1}  - \sqrt {7{x^2} + 2x - 5}  = 0\) ta thấy chỉ có nghiệm \(x =  - 4\) thỏa mãn phương trình

Vậy nghiệm của phương trình trên là \(x =  - 4\)

Quynh Existn
Xem chi tiết
Nguyễn Lê Phước Thịnh
5 tháng 7 2021 lúc 20:12

a) Ta có: \(\sqrt{25x+75}+3\sqrt{x-2}=2\sqrt{x-2}+\sqrt{9x-18}\)

\(\Leftrightarrow5\sqrt{x+3}+3\sqrt{x-2}=2\sqrt{x-2}+3\sqrt{x-2}\)

\(\Leftrightarrow\sqrt{25x+75}=\sqrt{4x-8}\)

\(\Leftrightarrow25x-4x=-8-75\)

\(\Leftrightarrow21x=-83\)

hay \(x=-\dfrac{83}{21}\)

b) Ta có: \(\sqrt{\left(2x-1\right)^2}=4\)

\(\Leftrightarrow\left|2x-1\right|=4\)

\(\Leftrightarrow\left[{}\begin{matrix}2x-1=4\\2x-1=-4\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}2x=5\\2x=-3\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=\dfrac{5}{2}\\x=-\dfrac{3}{2}\end{matrix}\right.\)

c) Ta có: \(\sqrt{\left(2x+1\right)^2}=3x-5\)

\(\Leftrightarrow\left|2x+1\right|=3x-5\)

\(\Leftrightarrow\left[{}\begin{matrix}2x+1=3x-5\left(x\ge-\dfrac{1}{2}\right)\\2x+1=5-3x\left(x< \dfrac{1}{2}\right)\end{matrix}\right.\)

\(\Leftrightarrow\left[{}\begin{matrix}2x-3x=-5-1\\2x+3x=5-1\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=6\left(nhận\right)\\x=\dfrac{4}{5}\left(loại\right)\end{matrix}\right.\)

d) Ta có: \(\sqrt{4x-12}-14\sqrt{\dfrac{x-2}{49}}=\sqrt{9x-18}+8\)

\(\Leftrightarrow2\sqrt{x-3}-2\sqrt{x-2}=3\sqrt{x-2}+8\)

\(\Leftrightarrow2\sqrt{x-3}-5\sqrt{x-2}=8\)

\(\Leftrightarrow4\left(x-3\right)+25\left(x-2\right)-20\sqrt{x^2-5x+6}=8\)

\(\Leftrightarrow4x-12+25x-50-8=20\sqrt{\left(x-2\right)\left(x-3\right)}\)

\(\Leftrightarrow20\sqrt{\left(x-2\right)\left(x-3\right)}=29x-70\)

\(\Leftrightarrow x^2-5x+6=\dfrac{\left(29x-70\right)^2}{400}\)

\(\Leftrightarrow x^2-5x+6=\dfrac{841}{400}x^2-\dfrac{203}{20}x+\dfrac{49}{4}\)

\(\Leftrightarrow\dfrac{-441}{400}x^2+\dfrac{103}{20}x-\dfrac{25}{4}=0\)

\(\Delta=\left(\dfrac{103}{20}\right)^2-4\cdot\dfrac{-441}{400}\cdot\dfrac{-25}{4}=-\dfrac{26}{25}\)(Vô lý)

vậy: Phương trình vô nghiệm