Chứng minh đa thức vô nghiệm : -/x-7/-5
chứng minh đa thức sau vô nghiệm : \(( x - 4 )^2 + ( x + 5 )^2\)
Ta có:
\(\left(x-4\right)^2\ge0\)
\(\left(x+5\right)^2\ge0\)
\(\Rightarrow\left(x-4\right)^2+\left(x+5\right)^2=0\) khi
\(\left\{{}\begin{matrix}\left(x-4\right)^2=0\\\left(x+5\right)^2=0\end{matrix}\right.\) \(\Leftrightarrow\left\{{}\begin{matrix}x-4=0\\x+5=0\end{matrix}\right.\) => không có giá trị x nào thỏa mãn
=> đa thức vô nghiệm
chứng minh đa thức sau vô nghiệm: B= x^10-x^7+x^4-x+1
chứng minh đa thức sau vô nghiệm D(x)= X2-4X+5
D(x) = x2- 4x +4 +1 = (x-2)2 +1 >0
vậy D(x) vô nghiệm
Dùng hằng thức (a-b)2=a2-2ab+b2 ta có
D(x)= X2-4x+5=x2-2x2+22+1
=(x-2)2+1
Vì (x-2)2>-1 suy ra (x-2)2+1>0
Vậy đa thức D(x)=x2-4x+5 không có nghiệm
\(D\left(x\right)=\left(x^2+4x+4\right)+1=\left(x+2\right)^2+1\)
Do \(\left(x+2\right)^2\ge0\) với mọi x \(\Rightarrow\left(x+2\right)^2+1\ge1\) với mọi x
=> D(x) vô nghiệm
chứng minh đa thức sau vô nghiệm:
(x - 4)^2 + (x + 5)^2
Nếu đa thức trên có nghiệm là n
<=>(n-4)2+(n+5)2=0
<=>(n-4)2=0 và (n+5)2=0
<=>n-4=0 và n+5=0
<=>n=4 và n=-5 (vô lý)
Vậy đa thức trên vô nghiệm
Chứng minh đa thức vô nghiệm
X2+x+1/2 (chứng minh cách lớp 7, ko dùng hằng đẳng thức)
\(x^2+x+\frac{1}{2}\)
\(=x^2+2.x.\frac{1}{2}+\frac{1}{4}-\frac{1}{4}+\frac{1}{2}\)
\(=\left(x+\frac{1}{2}\right)^2+\frac{1}{4}\ge\frac{1}{4}>;0\forall x\)
Vậy đa thức trên vô nghiệm
Chứng minh rằng đa thức x^2 +4x +5 vô nghiệm hehe nhầm nhọt :P
x2+5x+4=(x2+x)+(4x+4)=(x+4)(x+1)=0
Đa thức đó luôn có 2 nghiệm phân biệt -4 và -1
mk có cách khác:
vì x2 lớn hơn hoặc bằng 0
5x lớn hơn hoặc bằng 0
=> x2 + 4 + 5x lớn hơn hoặc bằng 4 > 0
=> đa thức trên vô nghiệm
theo mk bn nên để số 4 ra ngoài vì nó là số tự do mà!!
Bạn o0o ngốc 7A1 o0o sai rồi
Nếu x là số âm thì sao
Chứng minh đa thức x2+x+1 vô nghiệm
f(x)=x2+x+1=x2+\(\dfrac{1}{2}x+\dfrac{1}{2}x+\dfrac{1}{4}+\dfrac{3}{4}\)
=\(x\left(x+\dfrac{1}{2}\right)+\dfrac{1}{2}\left(x+\dfrac{1}{2}\right)+\dfrac{3}{4}\)
=\(\left(x+\dfrac{1}{2}\right)\left(x+\dfrac{1}{2}\right)+\dfrac{3}{4}=\left(x+\dfrac{1}{2}\right)^{^2}+\dfrac{3}{4}\)
=>f(x)≥\(\dfrac{3}{4}\)
=>đa thức trên vô nghiệm
Bài này có nhiều cách, vừa rồi là cách cơ bản, còn nếu bạn muốn nâng cao chút thì có thể dùng cách này nha:
Xét x≥0 thì x+1>0
x(x+1)≥0=>x(x+1)+1>0 =>x2+x+1>0 (1)
Xét -1<x<0 thì x+1≤0. Ta lại có x2≥0 nên x2+x+1 >0 (2)
Xét x≤-1 thì x<0 và x+1≤0. Do đó
x(x+1) ≥0=>x(x+1) +1>0=>x2+x+1>0 (3)
Từ (1), (2), (3)=> đa thức f(x) vô nghiệm
`***`:Cách khác bạn dưới
`x^2+x+1=0`
`Delta=b^2-4ac`
`=1-4=-4<0`
`=>` pt vô no
Chứng minh đa thức f(x)=x^2+x+1 vô nghiệm
Ta có: \(x^2+x+1\)
\(=x^2+2\cdot x\cdot\dfrac{1}{2}+\dfrac{1}{4}+\dfrac{3}{4}\)
\(=\left(x+\dfrac{1}{2}\right)^2+\dfrac{3}{4}>0\forall x\)
hay đa thức \(f\left(x\right)=x^2+x+1\) vô nghiệm
Chứng minh đa thức sau vô nghiệm:
x8 - x7 + x4 - x +1
x8-x7+x4-x+1
=( x8-x7) -(x-1)+x4
=x(x-1)-(x-1)+x4
=(x-1)(x-1)+x4
=(x-1)2+x4
mà (x-1)2\(\ge\)0
x4 \(\ge\)0
=> (x-1)2+x4 \(\ge\) 0
Vậy x8-x7+x4-x+1 \(\ge\) 0
=> đa thức trên vô nghiệm
Chứng minh đa thức sau vô nghiệm f(x)=5x2 +9
\(5x^2+9>=9>0\forall x\)
nên f(x) vô nghiệm
Cho `f(x)=0`
`=>5x^2+9=0`
`=>5x^2=-9` (Vô lí vì `5x^2 >= 0` mà `-9 < 0`)
Vậy đa thức `f(x)` vô nghiệm
tâ có 5x2≥0∀x
mà 9 > 0
=>5x2 +9>0
hay đa thức sau vô nghiệm