Điều kiện xác định của biểu thức\(\dfrac{\sqrt{x}-1}{2x}\)là
Điều kiện xác định của biểu thức\(\dfrac{1}{\sqrt{x}-\sqrt{2x-1}}\)là
ĐKXĐ: \(\left\{{}\begin{matrix}x\ge\dfrac{1}{2}\\x\ne1\end{matrix}\right.\)
Điều kiện xác định của biểu thức \(\sqrt{\dfrac{1}{x^2-2x+1}}\)
Lời giải:
ĐKXĐ: \(\left\{\begin{matrix}
x^2-2x+1\neq 0\\
\frac{1}{x^2-2x+1}\geq 0\end{matrix}\right.\Leftrightarrow x^2-2x+1>0\)
$\Leftrightarrow (x-1)^2>0$
$\Leftrightarrow x-1\neq 0$
$\Leftrightarrow x\neq 1$
Tìm điều kiện xác định của biểu thức : B = \(\sqrt{x^2-3x}\) + \(\sqrt{\dfrac{x-5}{x-1}}\)- \(\sqrt[3]{2x-1}\)
Tìm điều kiện xác định của biểu thức sau
\(\sqrt{\dfrac{4}{2x-1}}\)
ĐK:`4/(2x-1)>=0(x ne 1/2)`
Mà `4>0`
`<=>2x-1>0`
`<=>2x>1`
`<=>x>1/2`
Vậy `x>1/2` thì `sqrt{4/(2x-1)}` có nghĩa
\(DK:\left\{{}\begin{matrix}2x-1>0\\4\ge2x-1\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}x>\dfrac{1}{2}\\x\le\dfrac{5}{2}\end{matrix}\right.\)
Vậy \(x\in(\dfrac{1}{2};\dfrac{5}{2}]\) hay \(\dfrac{1}{2}< x\le\dfrac{5}{2}\)
\(A=\dfrac{\sqrt{x}-1}{\sqrt{x}+1}+\dfrac{\sqrt{x}+1}{\sqrt{x}-1}-\dfrac{3\sqrt{x}+1}{\sqrt{x}-1}\)
a. tìm điều kiện xác định của biểu thức A
b. rút gọn biểu thức A
Sửa đề: \(A=\dfrac{\sqrt{x}-1}{\sqrt{x}+1}+\dfrac{\sqrt{x}+1}{\sqrt{x}-1}-\dfrac{3\sqrt{x}+1}{x-1}\)
a: ĐKXĐ: x>=0; x<>1
b: \(A=\dfrac{\sqrt{x}-1}{\sqrt{x}+1}+\dfrac{\sqrt{x}+1}{\sqrt{x}-1}-\dfrac{3\sqrt{x}+1}{x-1}\)
\(=\dfrac{\left(\sqrt{x}-1\right)^2+\left(\sqrt{x}+1\right)^2-3\sqrt{x}-1}{x-1}\)
\(=\dfrac{x+2\sqrt{x}+1+x-2\sqrt{x}+1-3\sqrt{x}-1}{x-1}\)
\(=\dfrac{2x-3\sqrt{x}+1}{x-1}=\dfrac{\left(\sqrt{x}-1\right)\cdot\left(2\sqrt{x}-1\right)}{x-1}\)
\(=\dfrac{2\sqrt{x}-1}{\sqrt{x}+1}\)
a) ĐKXĐ: \(x\ge0,x\ne1\)
b) \(A=\dfrac{\sqrt{x}-1}{\sqrt{x}+1}+\dfrac{\sqrt{x}+1}{\sqrt{x}-1}-\dfrac{3\sqrt{x}+1}{\sqrt{x}-1}\)
\(A=\dfrac{\sqrt{x}-1}{\sqrt{x}+1}+\dfrac{\sqrt{x}+1-3\sqrt{x}-1}{\sqrt{x}-1}\)
\(A=\dfrac{\sqrt{x}-1}{\sqrt{x}+1}+\dfrac{-2\sqrt{x}}{\sqrt{x}-1}\)
\(A=\dfrac{\left(\sqrt{x}-1\right)^2}{\left(\sqrt{x}+1\right)\left(\sqrt{x}-1\right)}-\dfrac{2\sqrt{x}\left(\sqrt{x}+1\right)}{\left(\sqrt{x}+1\right)\left(\sqrt{x}-1\right)}\)
\(A=\dfrac{x-2\sqrt{x}+1-2x-2\sqrt{x}}{\left(\sqrt{x}+1\right)\left(\sqrt{x}-1\right)}\)
\(A=\dfrac{-x-4\sqrt{x}+1}{x-1}\)
bài 1: tìm điều kiện xác định với giá trị nào của x thì các biểu thức sau đây xác định
a, \(\sqrt{-2x+3}\)
b, \(\sqrt{3x+4}\)
c, \(\sqrt{1+x\overset{2}{ }}\)
d, \(\sqrt{^{-3}_{3x+5}}\)
e, \(\sqrt{\dfrac{2}{x}}\)
help me :((
a/ ĐKXĐ : \(-2x+3\ge0\)
\(\Leftrightarrow x\le\dfrac{3}{2}\)
b/ ĐKXĐ : \(3x+4\ge0\)
\(\Leftrightarrow x\ge-\dfrac{4}{3}\)
c/ Căn thức \(\sqrt{1+x^2}\) luôn được xác định với mọi x
d/ ĐKXĐ : \(-\dfrac{3}{3x+5}\ge0\)
\(\Leftrightarrow3x+5< 0\)
\(\Leftrightarrow x< -\dfrac{5}{3}\)
e/ ĐKXĐ : \(\dfrac{2}{x}\ge0\Leftrightarrow x>0\)
P.s : không chắc lắm á!
Tìm x:
a)\(\sqrt{3x-6}\)=3
b)\(\sqrt{5x-16}\)=2
c)Tìm điều kiện xác định của biểu thức: B=\(\dfrac{2x-3}{x^2-4x+3}\)
a) ĐK: x ≥ 2
\(\sqrt{3x-6}=3\)
\(\Leftrightarrow3x-6=9\)
<=> 3x = 15
<=> x = 5
Vậy:....
b) ĐK: 5x - 16 ≥ 0
<=> 5x ≥ 16
<=> x ≥ 16/5
\(\sqrt{5x-16}=2\)
<=> 5x - 16 = 4
<=> 5x = 20
<=> x = 4
c) ĐK: \(x^2-4x+3\ne0\)
\(\Leftrightarrow\left(x-1\right)\left(x-3\right)\ne0\)
\(\Leftrightarrow\left\{{}\begin{matrix}x\ne1\\x\ne3\end{matrix}\right.\)
bình phương hai vế ta được:
a)điều kiện của x:x≥2
3x-6=9 <=> x=5(nhận)
b)ĐK: x≥16/5
5x-16=4 <=>x=4(nhận)
c) ta có: \(\dfrac{2x-3}{\left(x-2\right)^2-1}\)= \(\dfrac{2x-3}{\left(x-3\right)\left(x-1\right)}\)
ĐKXĐ: x≠3 ;x≠1
a,\(\sqrt{3x-6}=3\) (với x\(\ge\)2)
=>\(\left(\sqrt{3x-6}\right)^2=3^2\)
<=>\(3x-6=9\)<=>\(3x=9+6\)<=>x=\(\dfrac{15}{3}\)=5(thỏa mãn)
b,\(\sqrt{5x-16}=2\) (với x\(\ge\)16/5)
=>\(\left(\sqrt{5x-16}\right)^2=2^2\)<=>\(5x-16=4< =>5x=20< =>x=4\)(thỏa mãn)
c,B xác định khi \(x^2-4x+3\ne0< =>x^2-2.2.x+2^2-1\ne0\)
\(< =>\left(x-2\right)^2-1\ne0\)
\(< =>\left(x-2+1\right)\left(x-2-1\right)\ne\)0
\(< =>\left(x-1\right)\left(x-3\right)\ne0\)
\(< =>\left[{}\begin{matrix}x-1\ne0\\x-3\ne0\end{matrix}\right.< =>\left[{}\begin{matrix}x\ne1\\x\ne3\end{matrix}\right.\)
Tìm điều kiện xác định của các biểu thức sau
a) \(\sqrt{\dfrac{x-1}{5-x}}\) ; b) \(\dfrac{1}{\sqrt{x^2-5x+6}}\)
a: ĐKXĐ: \(\dfrac{x-1}{5-x}\ge0\)
\(\Leftrightarrow\dfrac{x-1}{x-5}\le0\)
\(\Leftrightarrow\left\{{}\begin{matrix}x-1\ge0\\x-5< 0\end{matrix}\right.\Leftrightarrow1\le x< 5\)
b: ĐKXĐ: \(\left[{}\begin{matrix}x>3\\x< 2\end{matrix}\right.\)
Tìm điều kiện của x để biểu thức xác định
a) \(\sqrt{-2x^2+3}\)
b) \(\sqrt{6x^2-6}\)
c) \(\sqrt{\dfrac{3}{-x^2+5}}\)
d) \(\sqrt{-x^3-5}\)
a: ĐKXĐ: \(-\dfrac{\sqrt{6}}{2}\le x\le\dfrac{\sqrt{6}}{2}\)
b: ĐKXĐ: \(\left[{}\begin{matrix}x\ge1\\x\le-1\end{matrix}\right.\)
c: ĐKXĐ: \(-\sqrt{5}< x< \sqrt{5}\)
d: ĐKXĐ: \(x\le\sqrt[3]{-5}\)
Tìm điều kiện xác định của các biểu thức: a) \(\sqrt{\dfrac{-10}{5-4x}}\) b)\(\sqrt{\dfrac{2x-5}{x+2}}\) c)\(\sqrt{2-x^2}\) d)\(\sqrt{1-\sqrt{x-1}}\) |