{x+my=2
{mx-2y=1
Tìm m để hpt có nghiệm duy nhất [x;y] mà S=y-x đạt GTNN
mk ko bt viết hệ mong mọi người thông cảm ạ
cho hệ pt sau mx +y = m và
x+ my = 1
Tìm m để hpt có nghiêm duy nhất
\(\left\{{}\begin{matrix}mx+y=m\\mx+m^2y=m\end{matrix}\right.\)
\(\Rightarrow\left\{{}\begin{matrix}mx+y=m\\\left(m^2-1\right)y=0\end{matrix}\right.\)
Hệ đã cho có nghiệm duy nhất \(\Leftrightarrow m^2-1\ne0\)
\(\Leftrightarrow m\ne\pm1\)
Cho hpt:
x+2y=7
x+my=4
tìm m hpt có nghiệm duy nhất thỏa mãn x,y trái dấu
2. Cho hpt:
mx-y=2m
4x-my=6+m
m=? hpt có nghiệm duy nhất thỏa mãn x>0, y>0
cho hệ phương trình{ x+my= m+1
mx+y=3m-1
tìm m để hpt No duy nhất mà x=|y|
\(\left\{{}\begin{matrix}x+my=m+1\\mx+y=3m-1\end{matrix}\right.\)
\(\Leftrightarrow\) \(\left\{{}\begin{matrix}x=m+1-my\\m\left(m+1-my\right)+y=3m-1\end{matrix}\right.\)
\(\Leftrightarrow\) \(\left\{{}\begin{matrix}x=m+1-my\\m^2+m-m^2y+y=3m-1\end{matrix}\right.\)
\(\Leftrightarrow\) \(\left\{{}\begin{matrix}x=m+1-my\\y\left(m^2-1\right)=m^2-2m+1\end{matrix}\right.\)
Với m = 1 ta có: \(\left\{{}\begin{matrix}x=2-y\\0y=0\left(VSN\right)\end{matrix}\right.\)
\(\Rightarrow\) Hpt vô số nghiệm
Với m = -1 ta có: \(\left\{{}\begin{matrix}x=y\\0y=4\left(VN\right)\end{matrix}\right.\)
\(\Rightarrow\) Hpt vô nghiệm
Với m \(\ne\) \(\pm\)1 ta có: \(\left\{{}\begin{matrix}x=m+1-my\\y=\dfrac{m^2-2m+1}{m^2-1}\end{matrix}\right.\)
\(\Leftrightarrow\) \(\left\{{}\begin{matrix}x=m+1-\dfrac{m\left(m-1\right)^2}{\left(m-1\right)\left(m+1\right)}=m+1-\dfrac{m\left(m-1\right)}{m+1}=m+1-\dfrac{m^2-m}{m+1}\\y=\dfrac{m^2-2m+1}{m^2-1}=\dfrac{\left(m-1\right)^2}{\left(m-1\right)\left(m+1\right)}=\dfrac{m-1}{m+1}\end{matrix}\right.\)
\(\Leftrightarrow\) \(\left\{{}\begin{matrix}x=\dfrac{m^2+2m+1-m^2+m}{m+1}=\dfrac{3m+1}{m+1}\\y=\dfrac{m-1}{m+1}\end{matrix}\right.\)
Vậy hpt có nghiệm duy nhất x = ..; y = ... với x \(\ne\) \(\pm\) 1
Ta có: x = |y|
\(\Leftrightarrow\) \(\dfrac{3m+1}{m+1}=\left|\dfrac{m-1}{m+1}\right|\)
\(\Leftrightarrow\) \(\left[{}\begin{matrix}\dfrac{3m+1}{m+1}=\dfrac{m-1}{m+1}\\\dfrac{3m+1}{m+1}=\dfrac{1-m}{m+1}\end{matrix}\right.\)
\(\Rightarrow\) \(\left[{}\begin{matrix}3m+1=m-1\\3m+1=1-m\end{matrix}\right.\) (Vì m \(\ne\) -1)
\(\Leftrightarrow\) \(\left[{}\begin{matrix}2m=-2\\4m=0\end{matrix}\right.\)
\(\Leftrightarrow\) \(\left[{}\begin{matrix}m=-1\\m=0\end{matrix}\right.\)
Vì m \(\ne\) -1 nên m = -1 KTM
\(\Rightarrow\) m = 0 thỏa mãn đk
Vậy m = 0
Chúc bn học tốt!
B1: Cho hpt:{ 3x+my=10 { x - y=5
a.tìm m để hpt có nghiêm (x;y) trong đó x = 4 b.tìm m để hpt có nghiệm duy nhất (x;y) thỏa mãn 5x + 2y = 32
B2: Định m để hpt có nghiệm duy nhất là nghiệm nguyên { mx + 2y = m + 1 { 2x + my = 2m - 1
\(\left\{{}\begin{matrix}x+my=2\\mx-2y=1\end{matrix}\right.\)
tìm m để HPT có nghiệm (x;y) duy nhất thỏa mãn x<0 và y>0
Lời giải:
$x+my=2\Rightarrow x=2-my$. Thay vào PT(2):
$m(2-my)-2y=1$
$\Leftrightarrow 2m-y(m^2+2)=1$
$\Leftrightarrow y=\frac{2m-1}{m^2+2}$
$x=2-my=2-\frac{2m^2-m}{m^2+2}=\frac{m+4}{m^2+2}$
Vậy hpt có nghiệm $(x,y)=(\frac{m+4}{m^2+2}; \frac{2m-1}{m^2+2})$
Để $x<0; y>0$
$\Leftrightarrow \frac{m+4}{m^2+2}<0$ và $\frac{2m-1}{m^2+2}>0$
$\Leftrightarrow m+4<0$ và $2m-1>0$ (do $m^2+2>0$)
$\Leftrightarrow m< -4$ và $m> \frac{1}{2}$ (vô lý)
Do đó không tồn tại $m$ thỏa mãn đề.
\(\left\{{}\begin{matrix}x+my=2\\mx-2y=1\end{matrix}\right.\)
tìm m để HPT có nghiệm (x;y) duy nhất thỏa mãn x<0 và y<0
Hệ có nghiệm duy nhất khi: \(\dfrac{1}{m}\ne\dfrac{m}{-2}\Rightarrow m^2\ne-2\) (luôn đúng)
\(\Rightarrow\) Hệ luôn có nghiệm duy nhất với mọi m
Khi đó: \(\left\{{}\begin{matrix}x+my=2\\mx-2y=1\end{matrix}\right.\) \(\Leftrightarrow\left\{{}\begin{matrix}2x+2my=4\\m^2x-2my=m\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}\left(m^2+2\right)x=m+4\\y=\dfrac{mx-1}{2}\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}x=\dfrac{m+4}{m^2+2}\\y=\dfrac{4m-2}{2\left(m^2+2\right)}\end{matrix}\right.\)
Nghiệm hệ thỏa mãn x<0, y<0 \(\Rightarrow\left\{{}\begin{matrix}\dfrac{m+4}{m^2+2}< 0\\\dfrac{4m-2}{2\left(m^2+2\right)}< 0\end{matrix}\right.\) (1)
Do \(m^2+2>0;\forall m\) nên (1) tương đương:
\(\left\{{}\begin{matrix}m+4< 0\\4m-2< 0\end{matrix}\right.\) \(\Leftrightarrow\left\{{}\begin{matrix}m< -4\\m< \dfrac{1}{2}\end{matrix}\right.\) \(\Rightarrow m< -4\)
Cho hệ phương trình (m+1)x +8y =4m
mx + (m+3)y=3m-1
tìm m nguyên để hpt có nghiệm duy nhất (x;y) thỏa mãn x,y ϵ Z
Cho hpt \(\left\{{}\begin{matrix}mx-2y=2m-1\\2x-my=9-3m\end{matrix}\right.\)
a) Tìm m để hpt có nghiệm duy nhất (x,y) và tìm nghiệm (x,y) đó
b) Với (x,y) là nghiệm duy nhất
1. Tìm đẳng thức liên hệ giữa x,y không phụ thuộc vào m
2. Tìm m để \(x^2+y^2\) đạt GTNN
3. Tìm m để \(xy\) đạt GTLN
a:
Để hệ có nghiệm duy nhất thì m/2<>-2/-m
=>m^2<>4
=>m<>2 và m<>-2
Cho hpt {x-my=2;mx-4y=m-2 a,Tìm m để hpt vô nghiệm b,Tìm m để hpt vô số nghiệm c,Tìm m để hpt có nghiệm duy nhất