( a + b)^2 = 2.( a^2 + b^2 ) CM rằng a = b
1,
Lúc 6h sáng một xe máy khởi hành từ A đến B. Đến 7h30 một ô tô cũng khởi hành từ A đến B với vận tốc lớn hơn vận tốc xe máy 20km/h và 2 xe gặp nhau lúc 10h30. Tính vận tốc mỗi xe
2,
a,Cm rằng với mọi a,b>0 thì a/b+b/2>=2
b, Cho a,b>0 CM rằng 1/a+1/b=4/a+b
c, Cm rằng a+b(a/b+b/a)>=4
d, Cm rằng với mọi a,b,c ta cơ a^2+b^2+c^2>=ab+bc+ca
c)
áp dụng BĐT cô si cho 2 số không âm ta có
\(a^2+b^2\ge2\sqrt{a^2.b^2}=2ab\)
tương tự
\(b^2+c^2\ge2bc\)
\(c^2+a^2\ge2ac\)
cộng các vế với nhau ta đc
\(2\left(a^2+b^2+c^2\right)\ge2\left(ab+bc+ac\right)\)
=>\(a^2+b^2+c^2\ge ab+bc+ac\) (đpcm)
1.
Gọi vận tốc xe máy là: x (km/h) x >0
Vận tốc ô tô là: x +20 (km/h)
Thời gian xe máy đi là: 10h30 - 6h = 4h30=\(\dfrac{9}{2}h\)
Thời gian đi của ô tô là: 10h30 - 7h30 = 3h
Quãng đường đi của xe máy là: \(\dfrac{9x}{2}\) km
Quãng đường đi của ô tô là: \(\left(x+20\right).3=3x+60\)
Theo đề ra ta có pt:
\(\dfrac{9x}{2}=3x+60\)
\(\Leftrightarrow6x+120=9x\)
\(\Leftrightarrow x=40\) ( nhận)
Vậy vận tốc của xe máy là: 40 km/h
Vận tốc của ô tô là: 40+20 = 60 km/h
cho a^2 +b^2+c^2+3=2(a+b+c).cm rằng a=b=c=1
a2+b2+c2+3= 2(a+b+c)
=> a2+b2+c2+3=2a+2b+2c
=> (a2-2a+1) + ( b2 -2b+1)+ (c2-2c+1)=0
=> (a-1)2+(b-1)2+ (c-1)2=0
=> (a-1)2=(b-1)2=(c-1)2=0
=> a-1=b-1=c-1=0
=> a=b=c=1( đpcm)
cho a,b,c,d là các số nguyên .cm rằng A=[(a-c)^2+(b-d)^2](a^2+b^2)-(ad-bc)^2 là số chính phương.
cho a,b là các số thực dương. cm rằng:
\(\left(a+b\right)^2+\dfrac{a+b}{2}\ge2a\sqrt{b}+2b\sqrt{a}\)
Lời giải:
Áp dụng BĐT Cô-si cho các số dương:
\((a+b)^2+\frac{a+b}{2}=(a+b)[(a+b)+\frac{1}{2}]\)
\(=(a+b)[(a+\frac{1}{4})+(b+\frac{1}{4})]\geq 2\sqrt{ab}(\sqrt{a}+\sqrt{b})=2a\sqrt{b}+2b\sqrt{a}\)
Ta có đpcm
Dấu "=" xảy ra khi $a=b=\frac{1}{4}$
Chứng minh rằng nếu m= a+ b +c thì (am+ bc )(bm+ac)(cm+ab)= (a+b)^2 (a+c )^2 (b+c)^2
Chứng minh rằng nếu m= a+ b +c thì (am+ bc )(bm+ac)(cm+ab)= (a+b)^2 (a+c )^2 (b+c)^2
Chứng minh rằng nếu m= a+ b +c thì (am+ bc )(bm+ac)(cm+ab)= (a+b)^2 (a+c )^2 (b+c)^2
Cho a/b=c/d cm rằng a)a/a-b=c/c-d
b) a/b=a+c/b+d
c) a/3a+b=c/3c+d
d)a.b/bd=a^2+c^2/b^2+d^2
E) a.b/c.d=a^2-b^2/c^2-d^2
F) a.b/c.d=(a-b)^2/(c-d)^2
a)Chứng minh rằng nếu a^4 +b^4 +c^4 +d^4 =4abcd và a,b,c,d là các số dương thì a =b=c=d
b)Chứng minh rằng nếu m= a+ b +c thì (am+ bc )(bm+ac)(cm+ab)= (a+b)^2 (a+c )^2 (b+c)^2
b, Ta có \(m=a+b+c\)
\(\Rightarrow am+bc=a\left(a+b+c\right)+bc=a\left(a+b\right)+ac+bc=\left(a+c\right)\left(a+b\right)\)
CMTT \(bm+ac=\left(b+c\right)\left(b+a\right)\);\(cm+ab=\left(c+a\right)\left(c+b\right)\)
Suy ra \(\left(am+bc\right)\left(bm+ac\right)\left(cm+ab\right)=\left(a+b\right)^2\left(a+c\right)^2\left(b+c\right)^2\)
cho a +b+c=0
Cm rằng : \(\frac{1}{a^2+b^2-c^2}+\frac{1}{a^2+c^2-b^2}+\frac{1}{b^2+c^2-a^2}=0\left(a.b.c\ne0\right)\)
Ta co: a+b+c=0
=>a+b=-c
=>c2=a2+b2+2ab
=>a2+b2-c2=-2ab
=>\(\frac{1}{a^2+b^2-c^2}=\frac{1}{-2ab}\)
Tuong tu ....
=> \(\frac{1}{a^2+b^2+c^2}+...\)=\(\frac{1}{-2ab}+\frac{1}{-2bc}+\frac{1}{-2ac}\)
=\(\frac{a+b+c}{-2abc}\)
=0(ĐPCM)