Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
Trần Việt Hoàng
Xem chi tiết
Trần Việt Linh
13 tháng 12 2016 lúc 15:53

a) \(-\left|2x-4\right|+2016\)

Vì: \(\left|2x-4\right|\ge0\) , với mọi x

=> \(-\left|2x-4\right|\le0\)

=> \(-\left|2x-4\right|+2016\le2016\)

Vậy GTLN của bt đã cho la 2016 khi \(2x-4=0\Leftrightarrow x=2\)

b) \(1981+\left|x-4\right|\)

Vì: \(\left|x-4\right|\ge0\) , với mọi x

=> \(1981+\left|x-4\right|\ge1981\)

Vậy GTNN của bt đã cho là 1981 khi \(x-4=0\Leftrightarrow x=4\)

Duy Duong Duc
Xem chi tiết
Đinh Đức Hùng
3 tháng 5 2018 lúc 17:42

Ta có :

\(3A=\frac{3x^2}{x^4+x^2+1}=\frac{x^4+x^2+1-x^4+2x^2-1}{x^4+x^2+1}=\frac{\left(x^4+x^2+1\right)-\left(x^2-1\right)^2}{x^4+x^2+1}\)

\(=1-\frac{\left(x^2-1\right)^2}{x^4+x^2+1}\le1\)

\(\Leftrightarrow3A\le1\Rightarrow A\le\frac{1}{3}\)có GTLN là \(\frac{1}{3}\)

Dấu "=" xảy ra \(\Leftrightarrow x=\pm1\)

nguyễn thị mai trang
Xem chi tiết
Lấp La Lấp Lánh
2 tháng 9 2021 lúc 10:09

a) \(N=-1-x-x^2=-\left(x^2+x+\dfrac{1}{4}\right)-\dfrac{3}{4}=-\left(x+\dfrac{1}{2}\right)^2-\dfrac{3}{4}\le-\dfrac{3}{4}\)

\(maxN=-\dfrac{3}{4}\Leftrightarrow x=-\dfrac{1}{2}\)

b) \(B=3x^2+4x-13=3\left(x^2+\dfrac{4}{3}x+\dfrac{4}{9}\right)-\dfrac{35}{3}=3\left(x+\dfrac{2}{3}\right)^2-\dfrac{35}{3}\ge-\dfrac{35}{3}\)

\(minB=-\dfrac{35}{3}\Leftrightarrow x=-\dfrac{2}{3}\)

Nguyễn Lê Phước Thịnh
2 tháng 9 2021 lúc 14:14

a: Ta có: \(N=-x^2-x-1\)

\(=-\left(x^2+x+1\right)\)

\(=-\left(x^2+2\cdot x\cdot\dfrac{1}{2}+\dfrac{1}{4}+\dfrac{3}{4}\right)\)

\(=-\left(x+\dfrac{1}{2}\right)^2-\dfrac{3}{4}\le-\dfrac{3}{4}\forall x\)

Dấu '=' xảy ra khi \(x=-\dfrac{1}{2}\)

b: ta có: \(B=3x^2+4x-13\)

\(=3\left(x^2+\dfrac{4}{3}x-\dfrac{13}{3}\right)\)

\(=3\left(x^2+2\cdot x\cdot\dfrac{2}{3}+\dfrac{4}{9}-\dfrac{43}{9}\right)\)

\(=3\left(x+\dfrac{2}{3}\right)^2-\dfrac{43}{3}\ge-\dfrac{43}{3}\forall x\)

Dấu '=' xảy ra khi \(x=-\dfrac{2}{3}\)

Việt Anh
Xem chi tiết
Đặng Tiến
5 tháng 8 2016 lúc 8:46

\(A=x^2-5x+1=x^2-2.x.\frac{5}{2}+\left(\frac{5}{2}\right)^2-\frac{21}{4}=\left(x-\frac{5}{2}\right)^2-\frac{21}{4}\)

Vì \(\left(x-\frac{5}{2}\right)^2\ge0\)

nên \(\left(x-\frac{5}{2}\right)^2-\frac{21}{4}\ge-\frac{21}{4}\)

Vậy \(Min_{x^2-5x+1}=-\frac{21}{4}\)khi \(x-\frac{5}{2}=0\Leftrightarrow x=\frac{5}{2}\).

\(B=1-x^2+3x=-\left(x^2-3x-1\right)=-\left[x^2-2.x.\frac{3}{2}+\left(\frac{3}{2}\right)^2-\frac{13}{4}\right]=-\left[\left(x-\frac{3}{2}\right)^2-\frac{13}{4}\right]=-\left(x-\frac{3}{2}\right)^2+\frac{13}{4}\)Vì \(\left(x-\frac{3}{2}\right)^2\ge0\)

nên \(-\left(x-\frac{3}{2}\right)^2\le0\)

do đó \(-\left(x-\frac{3}{2}\right)^2+\frac{13}{4}\le\frac{13}{4}\)

Vậy \(Max_{1-x^2+3x}=\frac{13}{4}\)khi \(x-\frac{3}{2}=0\Leftrightarrow x=\frac{3}{2}\)

oooloo
Xem chi tiết
nguyen thi vang
9 tháng 1 2021 lúc 19:29

Ta có : \(M=\dfrac{1}{a+b^2}+\dfrac{1}{b+a^2}=\dfrac{a+1}{\left(a+b^2\right)\left(a+1\right)}+\dfrac{b+1}{\left(b+1\right)\left(b+a^2\right)}\le\dfrac{a+1}{\left(a+b\right)^2}+\dfrac{b+1}{\left(a+b\right)^2}=\dfrac{1}{a+b}+\dfrac{2}{\left(a+b\right)^2}\le\dfrac{1}{2}+\dfrac{2}{4}=1\)đẳng thức xả ra khi và chỉ khi a=b=1. Do đó GTLN của M là 1.

Ju Moon Adn
Xem chi tiết
Hoàng Thị Ngọc Anh
2 tháng 3 2017 lúc 16:04

Ta có: \(-\left|1,5-x\right|\le0\forall x\)

\(\Rightarrow-\left|1,5-x\right|-2\le-2\forall x\)

Dấu \("="\) xảy ra khi \(\left|1,5-x\right|=0\)

\(\Rightarrow1,5-x=0\Rightarrow x=1,5\)

Vậy \(Min_A=-2\) khi \(x=1,5.\)

An Lê Khánh
2 tháng 3 2017 lúc 16:02

-2

Thuhong Le thị thu hong
2 tháng 3 2017 lúc 16:16

-2

Võ Đông Anh Tuấn
9 tháng 12 2017 lúc 19:09

\(A=\dfrac{2}{x+\sqrt{x}+1}\)

Ta có : \(x+\sqrt{x}+1=\left(x+2.\dfrac{1}{2}.\sqrt{x}+\left(\dfrac{1}{2}\right)^2\right)+\dfrac{3}{4}=\left(\sqrt{x}+\dfrac{1}{2}\right)^2\ge\dfrac{3}{4}\)

\(\Leftrightarrow\dfrac{2}{x+\sqrt{x}+1}\le\dfrac{2}{\dfrac{3}{4}}=\dfrac{2.4}{3}=\dfrac{8}{3}\)

Vậy GTLN của A là \(\dfrac{8}{3}\). Dấu "=" xảy ra khi và chỉ khi \(x=-\dfrac{1}{2}\)

Mà x > 0, nên trường hợp này ta không chấp nhận .

Ta có : Vì x > 0 , \(\Rightarrow x+\sqrt{x}+1\ge1\)

Vậy giá trị nhỏ nhất là \(1\). Dấu "=" xảy ra khi và chỉ khi \(x=1.\)

Phạm Khánh Huyền
Xem chi tiết
Nguyễn Hoài Đức CTVVIP
Xem chi tiết