Tìm x, biết:
a) x\(^2\) – 4x + 4 = 25
b) (5 – 2x)\(^2\) – 16 = 0
Tìm x biết:
a. x^8 - 2x^4 = 8
b. (5x^2 + 3X - 2) - (4x^2 - x - 5) = 0
b: \(5x^2+3x-2-4x^2+x+5=0\)
\(\Leftrightarrow\left(x+1\right)\left(x+3\right)=0\)
\(\Leftrightarrow\left[{}\begin{matrix}x=-1\\x=-3\end{matrix}\right.\)
a) \(\Rightarrow x^8-2x^4-8=0\Rightarrow\left(x^4-4\right)\left(x^4+2\right)=0\)
\(\Rightarrow\left(x^2-2\right)\left(x^2+2\right)\left(x^4+2\right)=0\)
\(\Rightarrow x^2=2\Rightarrow x=\pm\sqrt{2}\)(do \(x^2+2\ge2>0,x^4+2\ge2>0\))
b) \(\Rightarrow x^2+4x+3=0\Rightarrow\left(x+1\right)\left(x+3\right)=0\)
\(\Rightarrow\left[{}\begin{matrix}x=-1\\x=-3\end{matrix}\right.\)
\(a,\Leftrightarrow x^8-2x^4-8=0\\ \Leftrightarrow x^8+2x^4-4x^4-8=0\\ \Leftrightarrow\left(x^4+2\right)\left(x^4-4\right)=0\\ \Leftrightarrow\left(x^4+2\right)\left(x^2-2\right)\left(x^2+2\right)=0\\ \Leftrightarrow\left[{}\begin{matrix}x=\sqrt{2}\\x=-\sqrt{2}\end{matrix}\right.\left(x^2+2>0;x^4+2>0\right)\\ b,\Leftrightarrow x^2+4x+3=0\\ \Leftrightarrow\left(x+1\right)\left(x+3\right)=0\Leftrightarrow\left[{}\begin{matrix}x=-1\\x=-3\end{matrix}\right.\)
Tìm x, biết:
a) 16x2-(4x-5)2=15 b) (2x+1)(1-2x)+(1-2x)2=18
c) (x-5)2-x(x-4)=9 d) (x-5)2+(x-4)(1-x)=0
a) <=> (4x - 4x + 5)(4x + 4x - 5) = 15 <=> 40x = 15 <=> x = 3/8
a) <=> (4x - 4x + 5)(4x + 4x - 5) = 15 <=> 5(8x-5) = 15
<=> 40x = 40 <=> x = 1
Cái này mới chuẩn
b) (2x+1)(1-2x)+(1-2x)2=18 <=> 1 - 4x2 + 4x2 - 4x + 1 = 18
<=> -4x = 16 <=> x = -4
Bài 2. Tìm x, biết:
a) (x+3)(x−1)−x(x−5)=11
b) (x2−4x+16)(x+4)−x(x+1)(x+2)+3x2=0
a: ta có: \(\left(x+3\right)\left(x-1\right)-x\left(x-5\right)=11\)
\(\Leftrightarrow x^2+2x-3-x^2+5x=11\)
\(\Leftrightarrow x=2\)
b: Ta có: \(\left(x+4\right)\left(x^2-4x+16\right)-x\left(x+1\right)\left(x+2\right)+3x^2=0\)
\(\Leftrightarrow x^3+64-x^3-3x^2-2x+3x^2=0\)
\(\Leftrightarrow2x=64\)
hay x=32
tìm x,biết:
a)(8x^2-4x):(-4x)-(x+2)=8
b)(2x^4-3x^3+x^2):(-1/2x^2)+4(x-1)^2=0
a: Ta có: \(\left(8x^2-4x\right):\left(-4x\right)-\left(x+2\right)=8\)
\(\Leftrightarrow-2x+1-x-2=8\)
\(\Leftrightarrow-3x=9\)
hay x=-3
b: Ta có: \(\left(2x^4-3x^3+x^2\right):\left(-\dfrac{1}{2}x^2\right)+4\left(x-1\right)^2=0\)
\(\Leftrightarrow-4x^2+6x-2+4x^2-8x+4=0\)
\(\Leftrightarrow-2x=-2\)
hay x=1
tìm x,biết:
a) 2√2x-5√8x+7√18x=28
b)√4x-20+√x-5-1/3√9x-45=4
c)√\(x^2\) -4-√x-2=0
a: \(\Leftrightarrow2\sqrt{2x}-10\sqrt{2x}+21\sqrt{2x}=28\)
=>\(13\sqrt{2x}=28\)
=>căn 2x=28/13
=>2x=784/169
=>x=392/169
b: \(\Leftrightarrow2\sqrt{x-5}+\sqrt{x-5}-\sqrt{x-5}=4\)
=>2*căn x-5=4
=>căn x-5=2
=>x-5=4
=>x=9
c: =>\(\sqrt{x-2}\left(\sqrt{x+2}-1\right)=0\)
=>x-2=0 hoặc x+2=1
=>x=-1 hoặc x=2
Giải các phương trình sau:
a) x^2 – 4x + 4 = 25
b) (5 – 2x)^2 – 16 = 0
c) (x – 3)^3 – (x – 3)(x^2 + 3x + 9) + 9(x + 1)^2 = 15
a) \(x^2-4x+4=25\\ \Rightarrow\left(x-2\right)^2=25\\ \Rightarrow\left[{}\begin{matrix}x-2=-5\\x-2=5\end{matrix}\right.\\ \Rightarrow\left[{}\begin{matrix}x=-3\\x=7\end{matrix}\right.\)
b) \(\left(5-2x\right)^2-16=0\\ \Rightarrow\left(5-2x\right)^2=16\\ \Rightarrow\left[{}\begin{matrix}5-2x=-4\\5-2x=4\end{matrix}\right.\\ \Rightarrow\left[{}\begin{matrix}x=4,5\\0,5\end{matrix}\right.\)
c) \(\left(x-3\right)^3-\left(x-3\right)\left(x^2+3x+9\right)+9\left(x+1\right)^2=15\\ \Rightarrow\left(x-3\right)^3-\left(x-3\right)^3+9\left(x+1\right)^2=15\\ \Rightarrow9\left(x+1\right)^2=15\\ \Rightarrow\left(x+1\right)^2=\dfrac{5}{3}\\ \Rightarrow\left[{}\begin{matrix}x+1=-\sqrt{\dfrac{5}{3}}\\x+1=\sqrt{\dfrac{5}{3}}\end{matrix}\right.\)
\(\Rightarrow\left[{}\begin{matrix}x=-\dfrac{3+\sqrt{15}}{3}\\x=\dfrac{-3+\sqrt{15}}{3}\end{matrix}\right.\)
a)\(\Leftrightarrow\)\(x^2-4x-21=0\)
\(\Leftrightarrow\)\(x^2-7x+3x-21=0\)
\(\Leftrightarrow\)\(x(x-7)+3(x-7)=0\)
\(\Leftrightarrow\)\((x-7)(x+3)=0\)
\(\Leftrightarrow\)\(\left[\begin{array}{} x=7\\ x=-3 \end{array} \right.\)
b)\(\Leftrightarrow\)\((5-2x)^2-4^2=0\)
\(\Leftrightarrow\)\((5-2x-4)(5-2x+4)=0\)
\(\Leftrightarrow\)\((-2x+1)(-2x+9)=0\)
\(\Leftrightarrow\)\(\left[\begin{array}{} x=\dfrac{1}{2}\\ x=\dfrac{9}{2} \end{array} \right.\)
c)\((x-3)^3-(x-3)(x^2+3x+9)+9(x+1)^2=15\)
\(\Leftrightarrow\)\(x^3-9x^2+27x-27-x^3+27+9x^2+18x+9-15=0\)
\(\Leftrightarrow\)\(45x-6=0\)
\(\Leftrightarrow\)\(x=\dfrac{2}{15}\)
tìm x biết:
a)2(x+3)+x(3+x)=0
b)(2x-3)^2-(4x-6)(x+2)+x^2+4x+4=0
\(\Rightarrow\left(x+3\right)\left(x+2\right)=0\Rightarrow\left[{}\begin{matrix}x+3=0\\x+2=0\end{matrix}\right.\Rightarrow\left[{}\begin{matrix}x=-3\\x=-2\end{matrix}\right.\)
\(2\left(x+3\right)+x\left(3+x\right)=0\)
\(\Rightarrow\left(x+3\right)\left(x+2\right)=0\)
\(\Rightarrow\left[{}\begin{matrix}x=-3\\x=-2\end{matrix}\right.\)
<=> (x+3)(x+2)=0
TH1 x+3=0 <=> x=-3
TH2 x+2=0 <=> x=-2
Vậy....
Bài 5. Tìm x, biết:
a) x (2x - 7) + 4x -14 = 0
b) x3 - 9x = 0
c) 4x2 -1 - 2(2x -1)2 = 0
d) (x3 - x2 ) - 4x2 + 8x - 4 = 0
\(a,\Leftrightarrow x\left(2x-7\right)+2\left(2x-7\right)=0\\ \Leftrightarrow\left(x+2\right)\left(2x-7\right)=0\Leftrightarrow\left[{}\begin{matrix}x=-2\\x=\dfrac{7}{2}\end{matrix}\right.\\ b,\Leftrightarrow x\left(x^2-9\right)=0\\ \Leftrightarrow x\left(x-3\right)\left(x+3\right)=0\Leftrightarrow\left[{}\begin{matrix}x=0\\x=3\\x=-3\end{matrix}\right.\\ c,\Leftrightarrow\left(2x-1\right)\left(2x+1\right)-2\left(2x-1\right)^2=0\\ \Leftrightarrow\left(2x-1\right)\left(2x+1-4x+2\right)=0\\ \Leftrightarrow\left(2x-1\right)\left(-2x+3\right)=0\Leftrightarrow\left[{}\begin{matrix}x=\dfrac{1}{2}\\x=\dfrac{3}{2}\end{matrix}\right.\\ d,\Leftrightarrow x^2\left(x-1\right)-4\left(x-1\right)^2=0\\ \Leftrightarrow\left(x-1\right)\left(x^2-4x+4\right)=0\\ \Leftrightarrow\left(x-1\right)\left(x-2\right)^2=0\Leftrightarrow\left[{}\begin{matrix}x=1\\x=2\end{matrix}\right.\)
. Tìm x, biết:
a) 6x.(x – 5) + 3x.(7 – 2x) = 18 b) 2x.(3x + 1) + (4 – 2x).3x = 7 c) 0,5x.(0,4 – 4x) + (2x + 5).x = -6,5 | d) (x + 3)(x + 2) – (x - 2)(x + 5) = 6 e) 3(2x - 1)(3x - 1) – (2x - 3)(9x - 1) = 0 |
a) Ta có: \(6x\left(x-5\right)+3x\left(7-2x\right)=18\)
\(\Leftrightarrow6x^2-30x+21x-6x^2=18\)
\(\Leftrightarrow-9x=18\)
hay x=-2
Vậy: S={-2}
b) Ta có: \(2x\left(3x+1\right)+\left(4-2x\right)\cdot3x=7\)
\(\Leftrightarrow6x^2+2x+12x-6x^2=7\)
\(\Leftrightarrow14x=7\)
hay \(x=\dfrac{1}{2}\)
Vậy: \(S=\left\{\dfrac{1}{2}\right\}\)
c) Ta có: \(0.5x\left(0.4-4x\right)+\left(2x+5\right)\cdot x=-6.5\)
\(\Leftrightarrow0.2x-2x^2+2x^2+5x=-6.5\)
\(\Leftrightarrow5.2x=-6.5\)
hay \(x=-\dfrac{5}{4}\)
Vậy: \(S=\left\{-\dfrac{5}{4}\right\}\)
d) Ta có: \(\left(x+3\right)\left(x+2\right)-\left(x-2\right)\left(x+5\right)=6\)
\(\Leftrightarrow x^2+5x+6-\left(x^2+3x-10\right)=6\)
\(\Leftrightarrow x^2+5x+6-x^2-3x+10=6\)
\(\Leftrightarrow2x+16=6\)
\(\Leftrightarrow2x=-10\)
hay x=-5
Vậy: S={-5}
e) Ta có: \(3\left(2x-1\right)\left(3x-1\right)-\left(2x-3\right)\left(9x-1\right)=0\)
\(\Leftrightarrow3\left(6x^2-5x+1\right)-\left(18x^2-29x+3\right)=0\)
\(\Leftrightarrow18x^2-15x+3-18x^2+29x-3=0\)
\(\Leftrightarrow14x=0\)
hay x=0
Vậy: S={0}
Tìm x Biết:
a,(2x-5^2)-4x(x-3)=0
b,6x^2-7x=0
a,(2x-5^2)-4x(x-3)=0
=> 2x-25-4x2+12x=0
=>-4x2+14x-25=0
đề bài ý a sai nha
b, 6x2-7x=0
=>x(6x-7)=0
=>x=0 và 6x-7=0
=>x=0 và x=7/6
vậy x=0 và x=7/6