giải zùm bài này vs các bạn
(x+y)2 +2(x+y)+1
các bạn ơi giúp mình giải bài này vs
cho các số x,y thoả mãn đẳng thức 5x^2+5y^2+8xy-2x+2y+2=0.Tính gt của bt:
M=(x+y)^2007+ (x-2)^2008+ (y+1)^2009
5x^2+5y^2+8xy-2x+2y+2=0
=>(4x^2+8xy+4y^2)+(x^2-2x+1)+(y^2+2y+1)=0
=>(2x+2y)^2+(x-1)^2+(y+1)^2=0
tổng 3 biểu thức không âm = 0 <=> chúng đều = 0
<=>2(x+y)=x-1=y+1=0
=>x=1;y=-1
Thay vào M ........
Cho \(xyz=1\)
Chứng minh \(\frac{x}{y^2+2}+\frac{y}{z^2+2}+\frac{z}{x^2+2}\ge1\)
Phiền các bạn giải giúp mình bài này vs
Áp dụng bđt Cô si cho 3 số ta đc
\(\frac{x}{y^2+2}+\frac{y}{z^2+2}+\frac{z}{x^2+2}\ge3\sqrt[3]{\frac{xyz}{\left(y^2+2\right)\left(z^2+2\right)\left(x^2+2\right)}}\)
\(VT\ge3\sqrt[3]{\frac{1}{27}=}1\)
Dấu " = " xảy ra <=> x = y = z = 1
p/s : quên cách làm khúc giữa
Áp dụng bất đẳng thức Cô si cho 3 số thực ko âm ta đc :
\(\frac{x}{y^2+2}+\frac{y}{z^2+2}+\frac{z}{x^2+2}\ge3\sqrt[3]{\frac{xyz}{\left(y^2+2\right)\left(z^2+2\right)\left(x^2+2\right)}}\)
\(\Rightarrow VT\ge3\sqrt[3]{\frac{1}{1+2y^2x^2+2z^2x^2+2z^2y^2+4x^2+4z^2+4y^2+8}}\)( phân tích đa thức thành nhân tử )
\(\Rightarrow VT\ge3\sqrt[3]{\frac{1}{9+\frac{2}{z^2}+\frac{2}{y^2}+\frac{2}{x^2}+4x^2+4z^2+4y^2}}\)( vì \(xyz=1\Rightarrow x^2y^2z^2=1\Rightarrow x^2y^2=\frac{1}{z^2}\)các phân số khác chứng minh tương tự )
\(\Rightarrow VT\ge3\sqrt[3]{\frac{1}{9+\frac{2+4z^4}{z^2}+\frac{2+4y^4}{y^2}+\frac{2+4x^4}{x^2}}}\)( quy đồng mẫu số ) ( A )
Áp dụng bất đẳng thức Cô si cho 3 số thực ko âm ta được :
\(\frac{2+4z^4}{z^2}+\frac{2+4y^4}{y^2}+\frac{2+4x^4}{x^2}\ge3\sqrt[3]{\frac{\left(2+4z^4\right)\left(2+4y^4\right)\left(2+4x^4\right)}{x^2y^2z^2}}\) ( 1 )
Ta có :
\(2+4x^4\ge2+4.1^4=6\) ( 2 )
\(2+4y^4\ge2+4.1^4=6\) ( vì x^4 , y^4 , z^4 đều là các lũy thừa số mũ chẵn ) ( 3 )
\(2+4z^4\ge2+4.1^4=6\)( 4 )
x^2 . y^2 . z^2 = ( xyz )^2 = 1^2 = 1 ( 5 )
Từ ( 1 ) , ( 2 ) , ( 3 ) , ( 4 ) , ( 5 ) suy ra :
\(\frac{2+4z^4}{z^2}+\frac{2+4y^4}{y^2}+\frac{2+4x^4}{x^2}\ge3\sqrt[3]{\frac{6^3}{1}}=18\) ( B )
Thay B vào A ta đc :
\(\Rightarrow VT\ge3\sqrt[3]{\frac{1}{9+\frac{2+4z^4}{z^2}+\frac{2+4y^4}{y^2}+\frac{2+4x^4}{x^2}}}\ge3\sqrt[3]{\frac{1}{9+18}}=1\)
Các bạn giúp em giải bài này :Tìm 2 số x và y thỏa điều kiện x^2+2(y^2+1)=2x(y+1)
x. ( x + 2 ) < 0
Mk xin các bn giải thk bài này rõ ràng zùm mk nha mk tick cho
x=-3;-4;-5;-6;-7;-8;-9;-10;-11;.........................
Còn lâu mới hết
tick hộ nha
x. ( x + 2 ) < 0
Mk xin các bn giải thk bài này rõ ràng zùm mk nha mk tick cho
x(x+2)<0
=>x và x+2 trái dấu
+)x>0 và x+2<0
=>x>0 và x<-2
=>0<x<-2(vô lí)
+)x<0 và x+2>0
=>x<0 và x>-2
=>-2<x<0=>x=-1
vậy x=-1
tick nhé
Các bạn giúp mình giải bài này với: Tìm giá trị của x,y,z biết |1/4-x| + |x-y+z| + |2/3 +y| =0
Vì |1/4 - x| ≥ 0; |x - y + z| ≥ 0; |2/3 + y| ≥ 0
=> |1/4 - x| + |x - y + z| + |2/3 + y| ≥ 0
Dấu " = " xảy ra <=>. \(\hept{\begin{cases}\frac{1}{4}-x=0\\x-y+z=0\\\frac{2}{3}+y=0\end{cases}}\Leftrightarrow\hept{\begin{cases}x=\frac{1}{4}\\\frac{1}{4}-y-\frac{2}{3}=0\\y=\frac{-2}{3}\end{cases}}\Leftrightarrow\hept{\begin{cases}x=\frac{1}{4}\\y=\frac{-5}{12}\\z=\frac{-2}{3}\end{cases}}\)
Vậy ....
1 phần 2 + 2 phần y = 3
tìm x,y thuộc z
giúp mik giải bài này vs
9/x = y/5, suy ra xy = 45. Do x, y nguyên nên x, y là ước của 45, từ đó ta suy ra x và y.
mày ko tích thì vẫn có đầy người để tích cho tao.
Các bạn giải dùm mình các bài này vs ngày mốt là em đi học rồi:
a)a^2 . y^2+ b^2 . x^2 - 2abxy
b)100-(3x-y)^2
c)64x^2-(8a+b)^2
d)(27x^3-a^3 . b^3
e)(7x-4)^2-(2x+1)^2
g)(x-y+4)-(2x+3y-1)^2
Các bạn ơi cho mình hỏi vs, nhanh nhé mình đang cần gấp, Toán 7 nâng cao nha
Có a+b+c=a^2+b^2+c^2=1 và x/y/z = a/b/c. Chứng minh rằng (x+y+z)^2 = x^2+y^2+z^2
Bài này về tỉ lệ thức nghe các bạn, giúp vs khó quá ??
ta có: a+b+c=1
<=>(a+b+c)^2=1
<=>ab+bc+ca=0 (1)
mặt khác: áp dụng tính chất dãy tỉ số bằng nhau ta có:
x/a=y/b=z/c=(x+y+z)/(a+b+c)=x+y+z
<=> x=a(x+y+z) ; y=b(x+y+z) ; z=c(x+y+z)
=>xy+yz+zx=ab(x+y+z)^2+bc(x+y+z)^2+ca(x...
<=>xy+yz+zx=(ab+bc+ca)(x+y+z)^2 (2)
từ (1) và (2) ta có đpcm