tìm GTNN của biểu thức \(A=\frac{4x^2-2x+1}{x^2}\)
Tìm GTNN của biểu thức \(A=\frac{16x^2+4x+1}{2x}\) với x > 0
Ta có : \(A=\frac{16x^2+4x+1}{2x}=8x+2+\frac{1}{2x}\)
Áp dụng bđt Cauchy : \(8x+\frac{1}{2x}\ge2\sqrt{8x.\frac{1}{2x}}=4\)
\(\Rightarrow A\ge6\)
Vậy MIN A = 6 \(\Leftrightarrow\begin{cases}x>0\\8x=\frac{1}{2x}\end{cases}\) \(\Leftrightarrow x=\frac{1}{4}\)
Cách khác nhanh hơn:
Áp dụng BĐT AM-GM:
\(16x^2+4x+1\ge3\sqrt[3]{4^2.x^2.4x}=3.4x=12x\)
Suy ra \(A\ge\frac{12x}{2x}=6\).
Đẳng thức xảy ra khi \(16x^2=4x=1\Leftrightarrow x=\frac{1}{4}\)
________________
P/S: Cách này nhanh hơn avf không đòi hỏi phải tính toán nhiều :D
a) Tìm GTNN của biểu thức A = x2 - 2x +5
b) Tìm GTNN của biểu thức B = 2x2 - 6x
c) Tìm GTNN của biểu thức C = 4x - x2 = 3
a) x2 - 2x + 5 = (x - 1)2 + 4 >= 4
Min là 4 khi x = 1
Tìm GTNN của biểu thức \(B=\frac{16x^2+4x+1}{2x}\) với x>0.
Viết B dưới dạng \(8x+2+\frac{1}{2x}\). Hai số \(8x\) và \(\frac{1}{2x}\) là hai số dương , có tích không đổi ( bằng 4 ) nên tổng của chúng nhỏ nhất khi và chỉ khi :
\(8x=\frac{1}{2x}\Leftrightarrow16x^2=1\Leftrightarrow x=\frac{1}{4}\left(x>0\right)\)
Vậy \(Min_B=\frac{1+1+1}{\frac{1}{2}}=6\Leftrightarrow x=\frac{1}{4}.\)
CHO MÌNH HỎI
1) Tìm GTLN của A= giá trị tuyệt đối x+2 - \(\frac{51}{2}\)
2) Tìm GTNN của: 2x2+4x+4+y2-4y
3) Tìm GTNN của biểu thức: x2-4x+13 đạt được x=?
Tìm GTNN của biểu thức B = x(x-3)(x+1)(x+4)
Tìm GTNN của A = \(\frac{x^2-4x+1}{x^2}\)
Tìm cả GTNN và GTLN của các biểu thức sau:
B = \(\frac{1}{2+\sqrt{4-x^2}}\)
C = \(\frac{1}{3-\sqrt{1-x^2}}\)
D = \(\sqrt{-x^2+4x+5}\)
Tìm GTNN của biểu thức A= x^2-6x+10; B= 3x^2-12x+1; Tìm GTLN của biểu thức C= -x^2+2x+5; D= 4x-x^2; E = x.(x-3)(x-4)(x-7)
\(A=x^2-6x+10\)
\(\Leftrightarrow A=x^2-2\cdot x\cdot3+3^2-9+10\)
\(\Leftrightarrow A=\left(x-3\right)^2+1\ge1\) \(\forall x\in z\)
\(\Leftrightarrow A_{min}=1khix=3\)
\(B=3x^2-12x+1\)
\(\Leftrightarrow B=\left(\sqrt{3}x\right)^2-2\cdot\sqrt{3}x\cdot2\sqrt{3}+\left(2\sqrt{3}\right)^2-12+1\)
\(\Leftrightarrow B=\left(\sqrt{3}x-2\sqrt{3}\right)^2-11\ge-11\) \(\forall x\in z\)
\(\Leftrightarrow B_{min}=-11khix=2\)
1. Tìm GTLN của biểu thức: B = 4x - x2 +3
2. Tìm GTNN của biểu thức \(Q=\frac{2x^2+2}{\left(x+1\right)^2}\)
Giúp mình với! Mình cần nó để soạn đề cương!
1.B= -(x^2 - 4x - 3)
= -(x^2 - 2x2 + 4 - 7)
= -(x - 2)^2 + 7 ≤ 7
Dấu "=" xảy ra khi x - 2 = 0 <=> x = 2
=>Amax = 7 khi x=2
2. chịu tự đi mà làm ngốc thật
2.ĐK: \(x\ne-1\)
\(Q=\frac{2x^2+2}{\left(x+1\right)^2}=\frac{\left(x-1\right)^2+\left(x+1\right)^2}{\left(x+1\right)^2}=\frac{\left(x-1\right)^2}{\left(x+1\right)^2}+1\ge1\forall x\)
Dấu "=" xảy ra khi: \(x-1=0\Rightarrow x=1\)
Vậy GTNN của Q là 1 khi x = 1
1. \(B=4x-x^2+3=-x^2+4x-4+7=-\left(x-2\right)^2+7\le7\forall x\)
Dấu "=" xảy ra khi \(x-2=0\Rightarrow x=2\)
Vậy GTLN của B là 7 khi x = 2
Tìm GTNN và GTLN nếu có của các biểu thức
\(A=\dfrac{2x^2-2x+5}{\left(x+1\right)^2}\)
\(B=\dfrac{4x^2+x+4}{x^2+x+1}\)
Tìm GTLN và GTNN của biểu thức sau : 4x+1/ x^2+2x+2
là \(4x+\dfrac{1}{x^2}+2x+2\) hay là \(\dfrac{4x+1}{x^2+2x+2}\) cái neog:0
\(P=\dfrac{4x+1}{x^2+2x+2}=\dfrac{x^2+2x+2-x^2+2x-1}{x^2+2x+2}=1-\dfrac{\left(x-1\right)^2}{x^2+2x+2}\le1\)
"=" xảy ra <=> x - 1 = 0 <=> x = 1
Vậy Max P = 1 <=> x = 1
P = \(\dfrac{4x+1}{x^2+2x+2}=\dfrac{-4x^2-8x-8+4x^2+12x+9}{x^2+2x+2}=-4+\dfrac{\left(2x+3\right)^2}{x^2+2x+2}\)
\(\ge-4\)
"=" xảy ra <=> 2x + 3 = 0 <=> x = -1,5
Vậy Min P = -4 <=> x = -1,5