Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
Hạnh Lương
Xem chi tiết
Nguyên Lê
Xem chi tiết
Nguyễn Việt Lâm
18 tháng 9 2021 lúc 16:24

a. 

Đề bài sai, ví dụ \(n=1\) lẻ nhưng  \(1^2+4.1+8=13\) ko chia hết cho 8

b.

n lẻ \(\Rightarrow n=2k+1\)

\(n^3+3n^2-n-3=n^2\left(n+3\right)-\left(n+3\right)=\left(n^2-1\right)\left(n+3\right)=\left(n-1\right)\left(n+1\right)\left(n+3\right)\)

\(=\left(2k+1-1\right)\left(2k+1+1\right)\left(2k+1+3\right)\)

\(=8k\left(k+1\right)\left(k+2\right)\)

Do \(k\left(k+1\right)\left(k+2\right)\) là tích 3 số tự nhiên liên tiếp nên chia hết cho 6

\(\Rightarrow8k\left(k+1\right)\left(k+2\right)\) chia hết cho 48

Hoàng Hưng Đạo
Xem chi tiết
missing you =
15 tháng 5 2021 lúc 6:22

phân tích n^2+4n+8=(n+1)(n+3)

vì là số tự nhiên lẻ nên đặt n=2k+1(k thuộc N)

=>n^2+4n+8=(n+1)(n+3)=(2k+2)(2k+4)

=4.(k+1)(k+2)

(k+1)(k+2) là tích 2 số tự nhiên liên tiếp chia hết cho 2

=>4.(k+1)(k+2)\(⋮\)8

 

missing you =
15 tháng 5 2021 lúc 6:22

bài kia làm tương tự

cô bé thì sao nào 992003
Xem chi tiết
soyeon_Tiểu bàng giải
29 tháng 6 2016 lúc 16:38

Ta có:

n2 + 4n + 5

= n2 - 1 + 4n + 6

= (n - 1).(n + 1) + 2.(2n + 3)

Do n lẻ nên n - 1 và n + 1 là 2 số chẵn liên tiếp

=> (n - 1).(n + 1) chia hết cho 8
Mà 2n + 3 lẻ => 2n + 3 không chia hết cho 4 => 2.(2n + 3) không chia hết cho 8

=> (n - 1).(n + 1) + 2.(2n + 3) không chia hết cho 8

=> n2 + 4n + 5 không chia hết cho 8

=> đpcm

Ủng hộ mk nha ^-^

Doãn Hải Anh
Xem chi tiết
Bùi Minh Anh
1 tháng 1 2016 lúc 10:35

a,        n^2+4n+3 = (n^2-1) +4n+4 = (n-1)(n+1) +4(2a+1)+4 = (n-1)(n+1)+8a+4+4

=(n-1)(n+1)+8a+8 = (n-1)(n+1) + 8.(a+1) 

vì n là lẻ => (n-1) và (n+1) là hai số chẵn liên tiếp => (n-1)(n+1)*8

và 8(a+1)*8 => (n-1)(n+1) + 8.(a+1) *8

vậy n^2+4n+3*8 với n là lẻ ( dấu * là dấu chia hết nhé)

b,           n^3+3n^2-n-3 = (n^3-n) + (3n^2-3) = n(n^2-1) + 3(n^2-1)= n.(n-1)(n+1) + 3.(n-1)(n+1)

=>3(n-1)(n+1) *8 và n(n-1)(n+1)*8 ( vì theo nguyên lý câu a thì (n-1)(n+1)*8  )        (1)

vì n;n-1;n+1 là 3 số tự nhiên liên tiếp nên n(n+1)(n-1) chia hết cho 3 và 2 => n(n-1)(n+1)*6

và 3(n-1)(n+1)*3 mà n-1 là chẵn nên 3(n-1)(n+1)*2  => 3(n-1)(n+1)*6 

=> n(n-1)(n+1) + 3(n-1)(n+1) *6                 (2)

từ (1) và (2) => n(n-1)(n+1) + 3(n-1)(n+1) * 6.8 = 48 hay n^3+3n^2-n-3*48

vậy với n là lẻ thì n^3+3n^2 -n-3 luôn chia hết cho 48

 

asuna
Xem chi tiết
Hoang Thiên Di
29 tháng 7 2017 lúc 10:02

Ta có : \(n^2+4n+5=\left(n+2\right)^2+1\)

Giả sử \(\left(n+2\right)^2+1\) \(⋮8\)

Ta có n lẻ => n+2 lẻ => (n+2)2 lẻ

Vì (n+2)2 là số chính phương lẻ nên chia 8 chỉ dư 1

<=> ( n+2)2 chia 8 dư 1

=> (n+2)2 + 1 chia 8 dư 2 => mâu thẫn với giả sử => điều giả sư sai => n2 + 4n + 5 không chia hết cho 8 ( đpcm)

Lăng Thu Hương
Xem chi tiết
Cô nàng giấu tên
Xem chi tiết
Quỳnh Như
Xem chi tiết
Trần Đăng Nhất
28 tháng 7 2017 lúc 21:58

a) Gọi 3 số nguyên liên tiếp là \(x -1 ; x ; x + 1 .\)

Ta có : (x - 1)3 + x3 + (x + 1)3

= x3 - 1 - 3x(x - 1) + x3 + x3 + 1 + 3x(x + 1)

= 3x3 - 3x(x - 1 - x - 1)

= 3x3 + 6x

= 3x3 - 3x + 9x

\(= 3(x - 1)x(x + 1) +9x\)

\((x - 1)x(x + 1) \) chia hết cho 3 nên \(3(x - 1)x(x + 1)\) chia hết cho 9

Vì 9 chia hết cho 9 nên 9x chia hết cho 9

\(\Rightarrow\) \(3(x - 1)x(x + 1) + 9x\) chia hết cho 9

\(\RightarrowĐPCM\)

Đức Hiếu
29 tháng 7 2017 lúc 7:18

Chứng minh: n^2 + 4n + 5 không chia hết cho 8 với mọi số nguyên ...

Đây nhé Taylor!!

Chúc bạn học tốt!!! Lần sau nhớ tra nha(đang lười làm khì khì)

Quang Duy
29 tháng 7 2017 lúc 7:17

Chứng minh: n^2 + 4n + 5 không chia hết cho 8 với mọi số nguyên ...

đây nhé taylor :)

Chúc bạn học tốt!!! Lần sau nhớ tra nhá!