Giải pt: \(\sqrt{2x^2-9}=-x\)
Giải pt:
\(\sqrt{x^2+x+4}+\sqrt{x^2+x+1}=\sqrt{2x^2+2x+9}\)
\(ĐK:x\in R\)
\(\sqrt{x^2+x+4}+\sqrt{x^2+x+1}=\sqrt{2x^2+2x+9}\) (*)
Đặt \(x^2+x+1=a;a\ge0\)
\(\rightarrow\left\{{}\begin{matrix}x^2+x+4=a+3\\2x^2+2x+9=2a+7\end{matrix}\right.\)
(*) \(\Rightarrow\sqrt{a+3}+\sqrt{a}=\sqrt{2a+7}\)
\(\Leftrightarrow\left(\sqrt{a+3}+\sqrt{a}\right)^2=\left(\sqrt{2a+7}\right)^2\)
\(\Leftrightarrow a+3+a+2\sqrt{a\left(a+3\right)}=2a+7\)
\(\Leftrightarrow2\sqrt{a\left(a+3\right)}=4\)
\(\Leftrightarrow\sqrt{a\left(a+3\right)}=2\)
\(\Leftrightarrow a\left(a+3\right)=4\)
\(\Leftrightarrow a^2+3a-4=0\)
\(\Leftrightarrow\left[{}\begin{matrix}a=1\left(tm\right)\\a=-4\left(ktm\right)\end{matrix}\right.\)
\(\Rightarrow x^2+x+1=1\)
\(\Leftrightarrow x\left(x+1\right)=0\)
\(\Leftrightarrow\left[{}\begin{matrix}x=0\\x=-1\end{matrix}\right.\) \((tm)\)
Vậy \(S=\left\{0;-1\right\}\)
giải pt: \(\sqrt{2x^2+x+9}+\sqrt{2x^2-x+1}=x+4\)
\(\sqrt{2x^2+x+9}+\sqrt{2x^2-x+1}=x+4\)
\(\Leftrightarrow\sqrt{2x^2+x+9}-\left(\frac{1}{2}x+3\right)+\sqrt{2x^2-x+1}-\left(\frac{1}{2}x+1\right)=0\)
\(\Leftrightarrow\frac{2x^2+x+9-\left(\frac{1}{2}x+3\right)^2}{\sqrt{2x^2+x+9}+\frac{1}{2}x+3}+\frac{2x^2-x+1-\left(\frac{1}{2}x+1\right)^2}{\sqrt{2x^2-x+1}+\frac{1}{2}x+1}=0\)
\(\Leftrightarrow\frac{\frac{1}{4}x\left(7x-8\right)}{\sqrt{2x^2+x+9}+\frac{1}{2}x+3}+\frac{\frac{1}{4}x\left(7x-8\right)}{\sqrt{2x^2-x+1}+\frac{1}{2}x+1}=0\)
\(\Leftrightarrow\frac{1}{4}x\left(7x-8\right)\left(\frac{1}{\sqrt{2x^2+x+9}+\frac{1}{2}x+3}+\frac{1}{\sqrt{2x^2-x+1}+\frac{1}{2}x+1}\right)=0\)
Dễ thấy: \(\frac{1}{\sqrt{2x^2+x+9}+\frac{1}{2}x+3}+\frac{1}{\sqrt{2x^2-x+1}+\frac{1}{2}x+1}>0\)
\(\Rightarrow\orbr{\begin{cases}x=0\\7x-8=0\end{cases}}\)\(\Rightarrow\orbr{\begin{cases}x=0\\x=\frac{8}{7}\end{cases}}\)
giải pt: \(2x^2+x+\sqrt{x^2+3}+2x.\sqrt{x^2+3}=9\)
\(2x^2+x+\sqrt{x^2+3}+2x\sqrt{x^2+3}=9\)
\(\Leftrightarrow2x^2+x-3+\left(\sqrt{x^2+3}-2\right)+\left(2x\sqrt{x^2+3}-4\right)=0\)
\(\Leftrightarrow\left(x-1\right)\left(2x+3\right)+\frac{x^2+3-4}{\sqrt{x^2+3}+2}+\frac{4x\left(x^2+3\right)-16}{2x\sqrt{x^2+3}+4}=0\)
\(\Leftrightarrow\left(x-1\right)\left(2x+3\right)+\frac{x^2-1}{\sqrt{x^2+3}+2}+\frac{4x^3+12x-16}{2x\sqrt{x^2+3}+4}=0\)
\(\Leftrightarrow\left(x-1\right)\left(2x+3\right)+\frac{\left(x-1\right)\left(x+1\right)}{\sqrt{x^2+3}+2}+\frac{4\left(x-1\right)\left(x^2+x+4\right)}{2x\sqrt{x^2+3}+4}=0\)
\(\Leftrightarrow\left(x-1\right)\left(\left(2x+3\right)+\frac{\left(x+1\right)}{\sqrt{x^2+3}+2}+\frac{4\left(x^2+x+4\right)}{2x\sqrt{x^2+3}+4}\right)=0\)
Dễ thấy: \(\left(2x+3\right)+\frac{\left(x+1\right)}{\sqrt{x^2+3}+2}+\frac{4\left(x^2+x+4\right)}{2x\sqrt{x^2+3}+4}>0\)
Nên x-1=0 suy ra x=1
Không có ĐK của x làm sao mà khẳng đinh cái kia >0 đ.c
Nếu 2x+3 và x+1 <0 thì sao nhỉ @@
@Thắng Nguyễn
Mình xin trình bày cách làm của mình :))
\(x^2+2x\sqrt{x^2+3}+x^2+3+x+\sqrt{x^2+3}=9+3=12
\)
\(\left(x+\sqrt{x^2+3}\right)^2+\left(x+\sqrt{x^2+3}\right)-12=0\)
\(\orbr{\begin{cases}x+\sqrt{x^2+3}=3\\x+\sqrt{x^2+3}=-4\end{cases}}\)
Bạn tự làm tiếp... Chuyển vế và bình phương. Thử lại ^^
giải pt\(\sqrt{16-8x+x^2}=4-x\)
\(\sqrt{4x^2-12x+9}=2x-3\)
\(1.\sqrt{16-8x+x^2}=4-x\)
\(\sqrt{\left(4-x\right)^2}=4-x\)
\(4-x-4+x=0\)
= 0 phương trình vô nghiệm.
\(2.\sqrt{4x^2-12x+9}=2x-3\)
\(\)\(\sqrt{\left(2x-3\right)^2}=2x-3\)
\(2x-3-2x+3=0\)
= 0 phương trình vô nghiệm.
a: Ta có: \(\sqrt{16-8x+x^2}=4-x\)
\(\Leftrightarrow\left|4-x\right|=4-x\)
hay \(x\le4\)
b: Ta có: \(\sqrt{4x^2-12x+9}=2x-3\)
\(\Leftrightarrow\left|2x-3\right|=2x-3\)
hay \(x\ge\dfrac{3}{2}\)
a/ \(\sqrt{16-8x+x^2}=4-x\)
\(\Leftrightarrow\left\{{}\begin{matrix}x\le4\\\sqrt{\left(4-x\right)^2}=4-x\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}x\le4\\\left|4-x\right|=4-x\end{matrix}\right.\)
\(\Leftrightarrow\left[{}\begin{matrix}x\le4\\\left[{}\begin{matrix}4-x=4-x\left(loại\right)\\4-x=x-4\end{matrix}\right.\end{matrix}\right.\)
\(\Leftrightarrow x=4\)
Vậy...
b/ \(\sqrt{4x^2-12x+9}=2x-3\)
\(\Leftrightarrow\left\{{}\begin{matrix}x\ge\dfrac{2}{3}\\\sqrt{\left(2x-3\right)^2}=2x-3\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}x\ge\dfrac{2}{3}\\\left[{}\begin{matrix}2x-3=2x-3\left(loại\right)\\2x-3=3-2x\end{matrix}\right.\end{matrix}\right.\)
\(\Leftrightarrow x=\dfrac{3}{2}\)
Vậy...
Giải pt: \(x^2+2x+2x\sqrt{x+3}=9-\sqrt{x+3}\)
GIẢI PT SAU:
\(\sqrt{3x-3}-\sqrt{5-x}=\sqrt{2x-4}\)
\(x^2-6x+9=4\sqrt{x^2-6x+6}\)
Tớ đã trả lời ở câu hỏi mới nhất r nên xin phép được xóa câu hỏi này nhé
1) Tìm x,y TM:
9^x-7^x=2^y
2) Giải pt:
\(\sqrt{x}+\sqrt{2-x}=\dfrac{2x}{\sqrt{2x-1}}\)
Mọi người giúp mình nhé =))
Mình làm câu 2 trước nhé:
đkxđ: \(\dfrac{1}{2}< x\le2\)
Áp dụng BĐT Bunyakovsky, ta có \(VT=\left(1.\sqrt{x}+1.\sqrt{2-x}\right)\)\(\le\sqrt{\left(1^2+1^2\right)\left[\left(\sqrt{x}\right)^2+\left(\sqrt{2-x}\right)^2\right]}\) \(=2\). ĐTXR \(\Leftrightarrow x=2-x\Leftrightarrow x=1\) (nhận). Vậy \(VT\le2\) (1)
Mặt khác, ta có \(\left(x-1\right)^2\ge0\) \(\Leftrightarrow x^2-\left(2x-1\right)\ge0\) \(\Leftrightarrow\left(x-\sqrt{2x-1}\right)\left(x+\sqrt{2x-1}\right)\ge0\). Do \(x+\sqrt{2x-1}>0\) nên điều này có nghĩa là \(x\ge\sqrt{2x-1}\) \(\Rightarrow\dfrac{x}{\sqrt{2x-1}}\ge1\) \(\Leftrightarrow\dfrac{2x}{\sqrt{2x-1}}\ge2\) hay \(VP\ge2\) (2). ĐTXR \(\Leftrightarrow x=1\) (nhận)
Từ (1) và (2) suy ra \(VT\le2\le VP\), do đó pt đã cho \(\Leftrightarrow VT=VP\) \(\Leftrightarrow x=1\)
Vậy pt đã cho có nghiệm duy nhất \(x=1\)
Giải pt
\(\sqrt{5x-1}+\sqrt[3]{9-x}=2x^2+3x-1\)
1. Giải pt:
\(\sqrt{x^2-2x+1}-\sqrt{x^2-6x+9}=10\)
2. Giải pt:
\(\sqrt{x+2\sqrt{x-1}}=3\sqrt{x-1}-5\)
1. đk: pt luôn xác định với mọi x
\(\sqrt{x^2-2x+1}-\sqrt{x^2-6x+9}=10\)
\(\Leftrightarrow\sqrt{\left(x-1\right)^2}-\sqrt{\left(x-3\right)^2}=10\)
\(\Leftrightarrow\left|x-1\right|-\left|x-3\right|=10\)
Bạn mở dấu giá trị tuyệt đối như lớp 7 là ok rồi!
2. đk: \(x\geq 1\)
\(\sqrt{x+2\sqrt{x-1}}=3\sqrt{x-1}-5\)
\(\Leftrightarrow\sqrt{x-1+2\sqrt{x-1}+1}=3\sqrt{x-1}-5\)
\(\Leftrightarrow\sqrt{\left(\sqrt{x-1}-1\right)^2}-3\sqrt{x-1}+5=0\)
\(\Leftrightarrow\left|\sqrt{x-1}-1\right|-3\sqrt{x-1}+5=0\)
Đến đây thì ổn rồi! bạn cứ xét khoảng rồi mở trị và bình phương 1 chút là ok cái bài!
Giải PT
\(x^2+2x+\sqrt{x+3}+2x\sqrt{x+3}=9\)
ĐK: \(x\ge-3\)
Đặt \(t=\sqrt{x+3}\) \(\left(t\ge0\right)\) \(\Rightarrow t^2=x+3\)
\(x^2+2x+\sqrt{x+3}+2x\sqrt{x+3}=9\)
\(x^2+x+\left(x+3\right)+t+2xt=12\)
\(t^2+t\left(2x+1\right)+\left(x^2+x-12\right)=0\)
Goi phương trình trên là phương trình bậc 2 ẩn t
\(\Delta=\left(2x+1\right)^2-4\cdot1\cdot\left(x^2+x-12\right)\)
\(=4x^2+4x+1-4x^2-4x+48=49>0\)
\(\Rightarrow\)Phương trình có hai nghiệm phân biệt
\(t_1=\frac{-2x-1-\sqrt{49}}{2\cdot1}=\frac{-2x-8}{2}=-x-4\)
\(t_2=\frac{-2x-1+\sqrt{49}}{2}=3-x\)
+) \(t=-x-4\)
\(\Rightarrow\sqrt{x+3}=-x-4\)
ĐK : \(x\le-4\)
Bình phương 2 vế \(\Rightarrow x+3=x^2+8x+16\)
\(x^2+7x+13=0\)
\(\Delta=-3< 0\Rightarrow x\in\varnothing\)
+) \(t=3-x\)
\(\Rightarrow\sqrt{x+3}=3-x\)
ĐK : \(x\le3\)
BÌnh phương 2 vế \(\Rightarrow x+3=9-6x+x^2\)
\(x^2+7x-6=0\)
\(\Rightarrow\orbr{\begin{cases}x=\frac{-7+\sqrt{73}}{2}\left(tm\right)\\x=\frac{-7-\sqrt{73}}{2}\left(ktm\right)\end{cases}}\)
Vậy \(S=\left\{\frac{-7+\sqrt{73}}{2}\right\}\)