Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
piojoi
Xem chi tiết
Toru
2 tháng 9 2023 lúc 22:35

\(\dfrac{1}{x}-\dfrac{1}{y}=\dfrac{1}{x-y}\left(ĐK:x>0;y>0\right)\)

\(\Rightarrow\dfrac{y-x}{xy}=\dfrac{1}{x-y}\)

\(\Rightarrow\left(y-x\right)\left(x-y\right)=xy\)

\(\Rightarrow-\left(x-y\right)^2=xy\) \(^{\left(1\right)}\)

Vì x, y nguyên dương khác nhau và khác 0 ⇒ \(xy>0 \) \(^{\left(2\right)}\)

Ta thấy: \(\left(x-y\right)^2>0\forall x;y\in Z;x\ne y\)

\(\Rightarrow-\left(x-y\right)^2< 0\forall x;y\in Z;x\ne y\)  \(^{\left(3\right)}\)

Từ \(\left(1\right);\left(2\right)\) và \(\left(3\right)\) \(\Rightarrow\) Không tìm được hai số x, y nguyên dương khác nhau thoả mãn yêu cầu đề bài.

#\(Urushi\)

Dương Tiến	Khánh
Xem chi tiết
Vũ Thị Kim Oanh
Xem chi tiết
Trần Đức Thắng
28 tháng 6 2015 lúc 17:46

a, không tồn tại chắc vậy

Yaden Yuki
28 tháng 6 2015 lúc 20:10

a thì chắc không tồn tại rồi     

Còn b thì không biết

Nguyễn Trần Bắc Hải
14 tháng 8 2016 lúc 10:31

a ko tồn tại

b cũng Zậy

Tiến Nguyễn Minh
Xem chi tiết
DinhVien
Xem chi tiết
Xem chi tiết
Unknow
Xem chi tiết
Lê Song Phương
25 tháng 8 2023 lúc 21:18

Xét \(P=x^2+y^2+2x\left(y-1\right)+2y+1\) 

\(P=x^2+y^2+2xy-2x+2y+1\)

+) Nếu \(y>x\) thì \(2y-2x+1>0\). Do đó \(P>\left(x+y\right)^2\). Hơn nữa:

\(P< x^2+y^2+1+2xy+2x+2y\) \(=\left(x+y+1\right)^2\)

suy ra \(\left(x+y\right)^2< P< \left(x+y+1\right)^2\), vô lí vì P là SCP.

+) Nếu \(x>y\) thì \(2y-2x+1< 0\) nên \(P< \left(x+y\right)^2\)

Hơn nữa \(P>x^2+y^2+1+2xy-2x-2y\) \(=\left(x+y-1\right)^2\)

Suy ra \(\left(x+y-1\right)^2< P< \left(x+y\right)^2\), vô lí vì P là SCP.

Vậy \(x=y\) (đpcm)

(Cơ mà nếu thay \(x=y\) vào P thì \(P=4x^2+1\) lại không phải là SCP đâu)

 

Nhóc_Siêu Phàm
Xem chi tiết
Hypergon
Xem chi tiết
Nhung Phan
Xem chi tiết
Nhung Phan
3 tháng 1 2016 lúc 11:55

Là sao hả Nguyễn Khắc Vinh?

vuong nguyen duy
3 tháng 1 2016 lúc 16:15

7878     56 56 123456        8975    4441        2214       33546          78542      34658