1/3.5 + 1/5.7 + 1/7.9+.......+1/49.51
\(\frac{1}{3.5}+\frac{1}{5.7}+\frac{1}{7.9}+..........+\frac{1}{49.51}=?\)
\(\frac{1}{3.5}+\frac{1}{5.7}+...+\frac{1}{49.51}=\frac{1}{2}.\left(\frac{2}{3.5}+\frac{2}{5.7}+...+\frac{2}{49.51}\right)\)
\(=\frac{1}{2}.\left(\frac{1}{3}-\frac{1}{5}+\frac{1}{5}-\frac{1}{7}+...+\frac{1}{49}-\frac{1}{51}\right)=\frac{1}{2}.\left(\frac{1}{3}-\frac{1}{51}\right)\)
\(=\frac{1}{2}.\frac{16}{51}=\frac{8}{51}\)
\(=\frac{1}{2}.\left(\frac{1}{3}-\frac{1}{5}+\frac{1}{5}-\frac{1}{7}+...+\frac{1}{49}-\frac{1}{51}\right)\)
\(=\frac{1}{2}.\left(\frac{1}{3}-\frac{1}{51}\right)=\frac{1}{2}.\frac{16}{51}=\frac{8}{51}\)
3/3.5+3/5.7+3/7.9+...+3/49.51 = ?
\(\frac{3}{3.5}+\frac{3}{5.7}+\frac{3}{7.9}+....+\frac{3}{49.51}\)
= 3. \(\frac{1}{2}\left(\frac{1}{3}-\frac{1}{5}+\frac{1}{5}-\frac{1}{7}+\frac{1}{7}-\frac{1}{9}+....+\frac{1}{49}-\frac{1}{51}\right)\)
=\(\frac{3}{2}\left(\frac{1}{3}-\frac{1}{51}\right)\)
=\(\frac{3}{2}.\frac{16}{51}\)
=\(\frac{8}{17}\)
đúng rồiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiii
các bạn cho mk hỏi câu này
2/3.5+2/5.7+2/7.9+...+2/97.99
thì mk sẽ viết thành
1/3.5+1/5.7+1/7.9+...+1/97.99
hay
2.(1/3.5+1/5.7+1/7.9+...+1/97.99)
giúp mk với
\(\frac{2}{3.5}+\frac{2}{5.7}+\frac{2}{7.9}+...+\frac{2}{97.99}\)
\(=\frac{1}{3}-\frac{1}{5}+\frac{1}{5}-\frac{1}{7}+\frac{1}{7}-\frac{1}{9}+...+\frac{1}{97}-\frac{1}{99}\)
\(=\frac{1}{3}+\left(\frac{1}{5}-\frac{1}{5}\right)+\left(\frac{1}{7}-\frac{1}{7}\right)+...+\left(\frac{1}{97}-\frac{1}{97}\right)-\frac{1}{99}\)
\(=\frac{1}{3}-\frac{1}{99}=\frac{32}{99}\)
~ Hok tốt ~
\(\)
Viết thành 2 . (1/3.5 + 1/5.7 + 1/7.9 + ...+ 1/97.99
Tính B=\(\frac{1.3}{3.5}+\frac{2.4}{5.7}+\frac{3.5}{7.9}+.....+\frac{49.51}{99.101}\)
B= 1/3.5 + 1/5.7+...+1/49.51
Bài này bạn nhân 2B ra
Sau đó tách mỗi phân số thành 2 hiệu
Từ đó triệt tiêu sẽ ra 2 số cuối cùng
Bạn trừ 2 số đó với nhau là ra
P/s : Sorry mình đg ôn thi nên ko nên giải trực tiếp, thông cảm nha
\(B=\frac{1}{2}\left(\frac{1}{3}-\frac{1}{5}+\frac{1}{5}-\frac{1}{7}+...+\frac{1}{49}-\frac{1}{51}\right)\)
\(=\frac{1}{2}\left(\frac{1}{3}-\frac{1}{51}\right)=\frac{16}{2.51}=\frac{8}{51}\)
.
B = \(\frac{1}{3.5}+\frac{1}{5.7}+...+\frac{1}{49.51}=\frac{1}{2}\left(\frac{2}{3.5}+\frac{2}{5.7}+...+\frac{2}{49.51}\right)\)
\(=\frac{1}{2}\left(\frac{1}{3}-\frac{1}{5}+\frac{1}{5}-\frac{1}{7}+...+\frac{1}{49}-\frac{1}{51}\right)=\frac{1}{2}\left(\frac{1}{3}-\frac{1}{51}\right)=\frac{1}{2}.\frac{16}{51}=\frac{8}{51}\)
Mn cho mk hỏi với ak. Mk cảm ơn trước. ʕ•ﻌ•ʔ
Tìm x, biết: 2/3.5 + 2/5.7 + 2/7.9 + .... + 2/49.51 = 1/x-1
Đề đúng như vậy nha mn.😘😘😘
Tính : \(\frac{1}{5.7}+\frac{1}{7.9}+\frac{1}{9.11}+...+\frac{1}{49.51}\)
\(\frac{1}{5.7}+\frac{1}{7.9}+\frac{1}{9.11}+\frac{1}{49.51}\)
\(=\frac{1}{2}.\left(\frac{2}{5}.7+\frac{2}{7}.9+\frac{2}{9}.11+...+\frac{2}{49}.51\right)\)
\(=\frac{1}{2}.\left(\frac{1}{5}-\frac{1}{7}+\frac{1}{7}-\frac{1}{9}+\frac{1}{9}-...+\frac{1}{49}-\frac{1}{51}\right)\)
\(=\frac{1}{2}.\left(\frac{1}{5}-\frac{1}{51}\right)\)
\(=\frac{1}{2}.\frac{46}{255}\)
\(=\frac{23}{255}\)
\(\frac{1}{5.7}+\frac{1}{7.9}+...+\frac{1}{49.51}\)
\(\Rightarrow2 \left(\frac{1}{5.7}+\frac{1}{7.9}+\frac{1}{9.11}+...+\frac{1}{49.51}\right)\)
\(\Rightarrow\frac{1}{5}-\frac{1}{7}+\frac{1}{7}-...+\frac{1}{49}-\frac{1}{51}\)
\(\Rightarrow\frac{1}{5}-\frac{1}{51}=\frac{46}{255}\)
Vì biểu thức đã được nhân 2 nên giá trị của biểu thức là:
\(\frac{46}{255}:2=\frac{23}{255}\)
\(\frac{1}{5.7}+\frac{1}{7.9}+...+\frac{1}{49.51}\)
\(=\frac{1}{2}\left(\frac{2}{5.7}+\frac{2}{7.9}+...+\frac{2}{49.51}\right)\)
\(=\frac{1}{2}\left(\frac{1}{5}-\frac{1}{7}+\frac{1}{7}-\frac{1}{9}+...+\frac{1}{49}-\frac{1}{51}\right)\)
\(=\frac{1}{2}\left(\frac{1}{5}-\frac{1}{51}\right)\)
\(=\frac{1}{2}\cdot\frac{46}{255}\)
\(=\frac{23}{255}\)
Tính nahnh
1/3.5 + 1/5.7 +...... + 1/49.51
\(A=\frac{1}{3.5}+\frac{1}{5.7}+...+\frac{1}{49.51}\)
\(2A=\frac{2}{3.5}+\frac{2}{5.7}+...+\frac{2}{49.51}\)
\(2A=\frac{5-3}{3.5}+\frac{7-5}{5.7}+...+\frac{51-49}{49.51}\)
\(2A=\frac{5}{3.5}-\frac{3}{3.5}+\frac{7}{5.7}-\frac{5}{5.7}+...+\frac{51}{49.51}-\frac{49}{49.51}\)
\(2A=\frac{1}{3}-\frac{1}{5}+\frac{1}{5}-\frac{1}{7}+...+\frac{1}{49}-\frac{1}{51}\)
\(2A=\frac{1}{3}-\frac{1}{51}=\frac{27}{51}-\frac{1}{51}=\frac{26}{51}\)
\(A=\frac{26}{51}:2=\frac{13}{51}\)
Đặt \(A=\frac{1}{3.5}+\frac{1}{5.7}+......+\frac{1}{49.51}\)
\(\Rightarrow2A=2\left(\frac{1}{3.5}+\frac{1}{5.7}+.....+\frac{1}{49.51}\right)\)
\(\Rightarrow2A=\frac{2}{3.5}+\frac{2}{5.7}+.....+\frac{2}{49.51}\)
\(\Rightarrow2A=\frac{1}{3}-\frac{1}{5}+\frac{1}{5}-\frac{1}{7}+.....+\frac{1}{49}-\frac{1}{51}\)
\(\Rightarrow2A=\frac{1}{3}-\frac{1}{51}\)
\(\Rightarrow2A=\frac{16}{51}\)
\(\Rightarrow A=\frac{16}{51}:2\)
\(\Rightarrow A=\frac{8}{51}\)
Vậy \(\Rightarrow\frac{1}{3.5}+\frac{1}{5.7}+.....+\frac{1}{49.51}=\frac{8}{51}\)
goi A là tổng
2A=2/3.5+2/5.7+...+2/49.51
2A=2/3-2/5+2/5.2/7+...+2/49-2/51
2A=2/3-2/51 2A=32/51 A=32/51:2 A=16/51
\(A=\frac{3}{3.5}+\frac{3}{5.7}+\frac{3}{7.9}+...+\frac{3}{49.51}=?\)
NHẦM GIẢI LẠI :
\(A=\frac{3}{2}.\left(\frac{1}{3}-\frac{1}{5}+\frac{1}{5}-\frac{1}{7}+...+\frac{1}{49}-\frac{1}{51}\right)=\frac{3}{2}.\left(\frac{1}{3}-\frac{1}{51}\right)=\frac{3}{2}.\frac{16}{51}=\frac{8}{17}\)