Cho hàm số \(y=-\frac{1}{3}\) và M( -3;1 ), N( 6;2 ), P( 9;-3 )
a) Vẽ đồ thị hàm số
b) Trong các điểm M,N,P điểm nào thuộc đồ thị
c) Tìm điểm A thuộc đồ thị biết hoành độ của A bằng 7
đang cần gấp
Cho hàm số y=\(\frac{-1}{3}\).x và hàm số y=x-4
a. vẽ đồ thị hàm số y=\(\frac{-1}{3}\).x
b. Chứng tỏ M(3;-1) là giao của hai đồ thị hàm số trên
c. Tính độ dài OM (O là gốc tọa độ)
Mong các bạn giúp đỡ mình nha!
bài 1: a/ cho hàm số \(y=\frac{3}{2}x\) . điểm E ( -4;m ) là 1 điểm thuộc đồ thị của hàm số trên. tìm m.
b/ cho hàm số y=I\(m+\frac{1}{2}\)I . x-3 đi qua điểm B ( 2;-1).
c/ cho hàm số y=f(x)=(2a + 3).x + . tìm a biết f(1)=-4
bài 2: cho hàm số y=f(x)=\(-x^2\)+3x. tính f(-2), f(\(\frac{2}{3}\)).
Cho hàm số \(y=-\frac{1}{3}x\)và hàm số y=x(-4)
+ Vẽ đồ thị hàm số \(y=-\frac{1}{3}x\)
+ Chứng tỏ M(3;-1) là giao của hai đồ thị hàm số trên
+ Tính độ dài OM ( O là gốc tọa độ )
Giúp mk cái cuối nha các bạn ! Cảm ơn trước nha ! Mình đang cần gấp nên mong các bạn giúp mình nhanh nhanh một tý ạ
Bạn nào biết giải thì comment nhanh lên ạ . Ai comment nhanh nhất thì mình sẽ k cho ( nhưng phải hợp lý một chút ạ )
Tính độ dài OM dùng định lý Pytago : \(OM^2=3^2+1^2\)
Từ đó tính ra OM. Mình làm sai à?
Cho các hàm số :
\(1\) ) \(y=\sqrt{m-2}x+5\)
2) \(y=\left(\frac{1}{\sqrt{m+1}}-1\right)x-2\)
3) \(y=\frac{m^2-1}{m-1}\left(x-3\right)\)
nhất?
a, Với giá trị nào của m thì các hàm số sau là hàm số bậc
b, Khi y là hàm số bậc nhất. Hãy xác định hệ số a và b.
Cho hàm số y=mx+m-3(dm); y=\(-\frac{1}{m}x+\frac{1-m}{m}\)(dm') (m là tham số)
Gọi K là giao điểm của(dm) và (dm'). Chứng Minh rằng K thuộc một đường cố định.
Cho hàm số y=mx+m-3(dm); y=\(-\frac{1}{m}x+\frac{1-m}{m}\)(dm') (m là tham số)
Gọi K là giao điểm của(dm) và (dm'). Chứng Minh rằng K thuộc một đường cố định.
(Đề kiểu này quá nặng, đầy kĩ thuật...!!!)
Bước 1: Ta sẽ CM \(K\) có toạ độ \(\left(\frac{-m^2+2m+1}{m^2+1};\frac{-m^2+2m-3}{m^2+1}\right)\) (bước này bạn tự làm nha).
Bước 2: Ta sẽ tìm max của hàm số \(g=\frac{-m^2+2m+1}{m^2+1}\).
Nhân chéo lên: \(-m^2+2m+1=gm^2+g\) hay \(\left(g+1\right)m^2-2m+\left(g-1\right)=0\).
Coi đây là phương trình bậc 2 theo \(m\), giải như bình thường.
\(\Delta'=\left(-1\right)^2-\left(g+1\right)\left(g-1\right)=2-g^2\).
Để \(m\) tồn tại thì pt phải có nghiệm, tức là \(\Delta'=2-g^2\ge0\) (tới đây dừng được rồi).
------
Bước 3: Xét hàm số \(f\left(x\right)=\sqrt{2-x^2}-2\) (với ĐKXĐ \(2-x^2\ge0\)).
Do đó \(g=\frac{-m^2+2m+1}{m^2+1}\) thoả ĐKXĐ này (ở bước 2 mới CM).
Ta tính \(f\left(\frac{-m^2+2m+1}{m^2+1}\right)=\frac{-m^2+2m-3}{m^2+1}\) (biến đổi khá dài nhưng nói chung là làm được).
Tức là \(f\left(x\right)=y\) với \(x,y\) là hoành độ và tung độ của \(K\).
Vậy \(K\) di động trên đồ thị của hàm số \(y=\sqrt{2-x^2}-2\) (mình xin không giải thích tại sao lại nghĩ ra hàm số này).
Bài 1:
a, Một đường thẳng đi qua O(0;0) và M (3;1,5) là đồ thị hàm số nào? Vì sao?
b, vẽ đồ thị hàm số trên mặt phẳng tọa độ
Bài 2:Cho y= \(\frac{-1}{2}\)x. Điểm nào thuộc đồ thị hàm số
a, A(0;2)
b, B(1;2)
c, C(-2;-4)
d, D(\(\frac{-1}{2}\), -1)
e, E(\(\frac{3}{2}\);\(\frac{3}{4}\))
f, F(\(\frac{-5}{4}\);\(\frac{-5}{2}\))
Bài 3:Cho hàm số y= -1,5x
a, Vẽ đồ thị hàm số
b, Điểm M (-2;3) thuộc đồ thị hàm số không?
Bài 4: Cho đồ thị hàm số y= -|x|
CÁC BẠN GIÚP MK VS!!!!
Cho hàm số \(y=x^3-3x^2+m^2x+m\). Tìm tất cả các giá trị của tham số m để hàm số có cực đại, cực tiểu và các điểm cực đại, cực tiểu của đồ thị hàm số đối xứng nhau qua đường thẳng d:\(y=\frac{1}{2}x-\frac{5}{2}\)
Ta có : \(y'=3x^2-6x+m^2\Rightarrow y'=0\Leftrightarrow3x^2-6x+m^2=0\left(1\right)\)
Hàm số có cực trị \(\Leftrightarrow\left(1\right)\) có 2 nghiệm phân biệt \(x_1;x_2\)
\(\Leftrightarrow\Delta'=3\left(3-m^2\right)>0\Leftrightarrow-\sqrt{3}< m< \sqrt{3}\)
Phương trình đường thẳng d' đi qua các điểm cực trị là : \(y=\left(\frac{2}{3}m^2-2\right)x+\frac{1}{3}m^2\)
=> Các điểm cực trị là :
\(A\left(x_1;\left(\frac{2}{3}m^2-2\right)x_1+\frac{1}{3}m^2+3m\right);B\left(x_2;\left(\frac{2}{3}m^2-2\right)x_2+\frac{1}{3}m^2+3m\right);\)
Gọi I là giao điểm của hai đường thẳng d và d' :
\(\Rightarrow I\left(\frac{2m^2+6m+15}{15-4m^2};\frac{11m^2+3m-30}{15-4m^2}\right)\)
A và B đối xứng đi qua d thì trước hết \(d\perp d'\Leftrightarrow\frac{2}{3}m^2-2=-2\Leftrightarrow m=0\)
Khi đó \(I\left(1;-2\right);A\left(x_1;-2x_1\right);B\left(x_2;-2x_2\right)\Rightarrow I\) là trung điểm của AB=> A và B đối xứng nhau qua d
Vậy m = 0 là giá trị cần tìm
Cho hàm số \(y=-\frac{1}{3}x^3+mx^2+\left(m-2\right)x-\frac{1}{3}\left(1\right)\), với m là tham số thực. Tìm m để hàm số (1) đồng biến trên đoạn có độ dài bằng 4
Ta có : \(y'=-x^2+2mx+m-2\Rightarrow\Delta'=m^2+m-2\)
Hàm số đồng biến trên đoạn có độ dài bằng 4 <=> phương trình y' =0 có 2 nghiệm phân biệt \(x_1;x_2\) và thỏa mãn :
\(\left|x_1-x_2\right|=4\Leftrightarrow\begin{cases}\Delta'>0\\\left|x_1-x_2\right|=4\end{cases}\)
\(\Leftrightarrow\begin{cases}m^2+m-2>0\\\left(x_1+x_2\right)^2-4x_1.x_2=16\end{cases}\)
\(\Leftrightarrow\begin{cases}m^2+m-2>0\\4m^2+4\left(m-2\right)=16\end{cases}\)
\(\Leftrightarrow m=2\) hoặc \(m=-3\)
Kết luận \(m=2\) hoặc \(m=-3\) thì hàm số đồng biến trên đoạn có độ dài bằng 4
Cho hàm số y=\(\frac{1}{3}x^3-2x^2+3x-\frac{1}{3}\)
Tìm m để đường thẳng d: y=mx-\(\frac{1}{3}\) cắt đồ thị (C) tại 3 điểm phân biệt P,M,N sao cho P cố định và thỏa mãn \(S_{OMN}=2S_{OPM}\)