Tính √x⁴y² với x,y≥0 A. −x²y B. x²y² C. x⁴y D. x²y
Bài 1 tìm x y biết x/y+z+1=y/x+z+1=z/x+y-2=x+y+z
Bài 2 cho a(y+z)=b(z+x)=c(x+y) với a khác b khác c và a,b,c khác 0 Cmr y-z/a(b-c)=z-x/b(c-a)=x-y/c(a-b)
Bài 3 tìm p/s dạng p/s tối giản a/b biết a/b=a+6/b+9 với a,b thuộc Z , b khác 0
Bài4cho 4 tỉ số bằng nhau a+b+c/d ; b+c+d/a ; c+d+a/a ; d+a+b/c tính giá trị của mỗi tỉ số trên
Rút gọn các biểu thức sau:
a) A=\(\dfrac{x\sqrt{y}+y\sqrt{x}}{x+2\sqrt{xy}+y}\)(x≥0 , y≥0 , xy≠0)
b) B=\(\dfrac{x\sqrt{y}-y\sqrt{x}}{x-2\sqrt{xy}+y}\)(x≥0 , y≥0 , x≠y)
c) C=\(\dfrac{3\sqrt{a}-2a-1}{4a-4\sqrt{a}+1}\)(a≥0 , a≠\(\dfrac{1}{4}\))
d) D=\(\dfrac{a+4\sqrt{a}+4}{\sqrt{a}+2}+\dfrac{4-a}{\sqrt{a}-2}\)(a≥0 , a≠4)
a) \(A=\dfrac{x\sqrt{y}+y\sqrt{x}}{x+2\sqrt{xy}+y}\)
\(A=\dfrac{\sqrt{xy}\left(\sqrt{x}+\sqrt{y}\right)}{\left(\sqrt{x}+\sqrt{y}\right)^2}\)
\(A=\dfrac{\sqrt{xy}}{\sqrt{x}+\sqrt{y}}\)
b) \(B=\dfrac{x\sqrt{y}-y\sqrt{x}}{x-2\sqrt{xy}+y}\)
\(B=\dfrac{\sqrt{xy}\left(\sqrt{x}-\sqrt{y}\right)}{\left(\sqrt{x}-\sqrt{y}\right)^2}\)
\(B=\dfrac{\sqrt{xy}}{\sqrt{x}-\sqrt{y}}\)
c) \(C=\dfrac{3\sqrt{a}-2a-1}{4a-4\sqrt{a}+1}\)
\(C=\dfrac{-\left(2a-3\sqrt{a}+1\right)}{\left(2\sqrt{a}\right)^2-2\sqrt{a}\cdot2\cdot1+1^2}\)
\(C=\dfrac{-\left(\sqrt{a}-1\right)\left(2\sqrt{a}-1\right)}{\left(2\sqrt{a}-1\right)^2}\)
\(C=\dfrac{-\sqrt{a}+1}{2\sqrt{a}-1}\)
d) \(D=\dfrac{a+4\sqrt{a}+4}{\sqrt{a}+2}+\dfrac{4-a}{\sqrt{a}-2}\)
\(D=\dfrac{\left(\sqrt{a}+2\right)^2}{\sqrt{a}+2}+\dfrac{\left(2-\sqrt{a}\right)\left(2+\sqrt{a}\right)}{\sqrt{a}-2}\)
\(D=\sqrt{a}+2-\dfrac{\left(\sqrt{a}-2\right)\left(\sqrt{a}+2\right)}{\sqrt{a}-2}\)
\(D=\left(\sqrt{a}+2\right)-\left(\sqrt{a}+2\right)\)
\(D=0\)
Tính giá trị biểu thức
a)A=5a-b
\(A=5a-b/3a-2b \) với \(\frac{a}{b}=\frac{5}{7}\)
\(B=\frac{3x-5}{2x-y}-\frac{4y+5}{x+3y}\)với x-y=5 và x khác -3y và y khác -2x
\(c=x\left(x+y\right)-y^2\left(x+y\right)+x^2-y^2+2\left(x+y\right)+3\)biết x+y+1=0
Cho xyz=2, x+y+z=0 tính D=(x+y)(y+z)(z+x)
\(E=\frac{x^3+6x+4}{x+2}\)với \(^{x^2-x=0}\)
a) Với x+y=2 tính: \(A=3\left(x^2+y^2\right)-\left(x^3+y^3\right)+1\)
b) Với x+y=1 tính : \(x^3+y^3+3xy\)
c) Với x-y=2xy=99 và y<0. tính x+y
1 ) Tìm các số x , y , z biết :
a ) x / -2 = y / 3 = z / -5 và x - y + z = 20
b ) x / 10 = y / 6 = z / 21 và 5x + y - 2z = 28
c ) x / 3 = y / 4 ; 5y = 3z và 2x - 3y + z = 6
d ) x / 2 = y / 3 = z / 5 và x , y , z = 810
2 ) Cho a / b = b / c = c / a
Chứng minh rằng : a = b = c
3 ) Cho x = a / b + c = b / c + a = c / a + b với a + b + c khác 0 . Tính x ?
B2:
a/b=b/c=c/a=a+b+c/b+c+a=1
suy ra a/b=1 suy ra a=b=1(vì hai số bằng nhau mới có tích là 1)
...................................................................................................
với b/c và c/a cũng tương tự như trên và sẽ suy ra a=b=c
Bạn TV Hoàng Linh giải câu 3 với câu 1 giùm mình nha
Làm giúp mk nha
1.2x=3y;5y=7z;3x+5y-7z=30
+) cho x=y/2;y/3=z/4. tính x+y+z/x+y-z
+)cho ad=bc với c,d khác 0 ,c khác d. chứng minh (a-b/c-d)^2007=a^2007-b^2007/c^2007-d^2007
Ta có: \(\hept{\begin{cases}x=\frac{y}{2}\\\frac{y}{3}=\frac{z}{4}\end{cases}}\Rightarrow\hept{\begin{cases}\frac{x}{3}=\frac{y}{6}\\\frac{y}{6}=\frac{z}{8}\end{cases}}\Rightarrow\frac{x}{3}=\frac{y}{6}=\frac{z}{8}\)
Đặt: \(\frac{x}{3}=\frac{y}{6}=\frac{z}{8}=k\Rightarrow\hept{\begin{cases}x=3k\\y=6k\\z=8k\end{cases}}\)
Khi đó \(\frac{x+y+z}{x+y-z}=\frac{3k+6k+8k}{3k+6k-8k}=17\)
b) Từ \(ad=bc\Rightarrow\frac{a}{c}=\frac{b}{d}=\frac{a-b}{c-d}\)
\(\Rightarrow\frac{a^{2017}}{c^{2017}}=\frac{b^{2017}}{d^{2017}}=\left(\frac{a-b}{c-d}\right)^{2017}\)(1)
Mặt khác: \(\frac{a^{2017}}{c^{2017}}=\frac{b^{2017}}{d^{2017}}=\frac{a^{2017}-b^{2017}}{c^{2017}-d^{2017}}\)(2)
Từ (1) và (2) =>đpcm
Đặt
Khi đó \(\frac{x+y+z}{x+y-z}=\frac{3k+6k+8k}{3k+6k-8k}=17\)
b) Từ \(ad=bc\Rightarrow\frac{a}{c}=\frac{b}{d}=\frac{a-b}{c-d}\)
\(\Rightarrow\frac{a^{2017}}{c^{2017}}=\frac{b^{2017}}{d^{2017}}=\left(\frac{a-b}{c-d}\right)^{2017}\left(1\right)\)
Mặt khác \(\frac{a^{2017}}{c^{2017}}=\frac{b^{2017}}{d^{2017}}=\frac{a^{2017}-b^{2017}}{c^{2017}-d^{2017}}\left(2\right)\)
Từ (1),(2)
=> (a-b/c-d)^2007=a^2007-b^2007/c^2007-d^2007
b1 : rút gọn biểu thức
a: x-y/y^2 nhân căn y^4/x^2 - 2xy + y^2 với x khác y
b: căn x- 2 căn x +1/x+ 2 căn x +1 với x > 0
b2: rút gọn rồi tính giá trị
a: B= căn (x+2) ^4 / (3-x)^2 + x^2+1/x+3 với x<3 và tính b khi x= 0.5
b: C = 5x - căn 8 + căn x^3 + 2x^2/ căn x+2 cới x > -2 và tính C khi x + - căn 2
c: D= căn 3(x+y)^2/4 nhân 2/x^2-y^2 với x khác y
chưng minh
a) x/y + y/z + z/x > hoặc = 3 với x,y,z >0
b) (x+y)(y+z)(z+x) > hoặc + 8xyz với x,y,z > 0
c) 1/a + 1/b + 1/c > hoặc = 3 với a+b+c = 3
d) a/b+c + b/c+a + c/b+a > hoặc = 3/2 với a , b , c > 0
Tính giá trị của biểu thức khi biết mối quan hệ giữa các biến
a) A= x4 - x.y3 + x3.y - y4 - 1 biết x+y=0
b) \(B=\left(1-\frac{z}{y}\right).\left(1-\frac{x}{y}\right).\left(1+\frac{y}{x}\right)\) biết x - y - z =0
c) C= x2 .(x + y) -y2 .(x+y)+x2 -y2 +2(x+y)-3 biết x+y+1=0
d) D= (x+y).(y+z).(x+z) biết x.y.z=2 và x+y+z=0
Mình đang vội giúp mình với
tìm các số nguyên x,y
a) x/3 = 8 / y
b) x/7 = 9/y với x>y
c) -2/x = y/5 với x< 0 < y
d) x-4/y-3 = 4/3 và x-y=5