Phân tích:
\(\sqrt{a-2\sqrt{a}-1}\)
Phân tích thành nhân tử
\(x+\sqrt{x}\)
\(x-\sqrt{x}\)
\(a+3\sqrt{a}-10\)
\(x\sqrt{x}+\sqrt{x}-x-1\)
\(x+\sqrt{x}-2\)
\(x-5\sqrt{x}+6\)
\(x\sqrt{x}-1\)
\(x\sqrt{x}-x+\sqrt{x}-1\)
\(x+2\sqrt{x}-15\)
\(x-2\sqrt{x}-3\)
\(a+\sqrt{a}-6\)
\(x-16\)
\(x+2\sqrt{x}+1\)
\(x-1\)
\(x-2\sqrt{x}+1\)
\(a\sqrt{a}+1\)
\(a+\sqrt{a}-2\)
\(2x-5\sqrt{x}+3\)
\(x-9\)
\(x+\sqrt{x}-6\)
1. $x+\sqrt{x}=\sqrt{x}(\sqrt{x}+1)$
2. $x-\sqrt{x}=\sqrt{x}(\sqrt{x}-1)$
3. $a+3\sqrt{a}-10=(a-2\sqrt{a})+(5\sqrt{a}-10)$
$=\sqrt{a}(\sqrt{a}-2)+5(\sqrt{a}-2)=(\sqrt{a}+5)(\sqrt{a}-2)$
4. $x\sqrt{x}+\sqrt{x}-x-1=(x\sqrt{x}+\sqrt{x})-(x+1)=\sqrt{x}(x+1)-(x+1)$
$=(x+1)(\sqrt{x}-1)$
5. $x+\sqrt{x}-2=(x-\sqrt{x})+(2\sqrt{x}-2)$
$=\sqrt{x}(\sqrt{x}-1)+2(\sqrt{x}-1)=(\sqrt{x}-1)(\sqrt{x}+2)$
6. $x-5\sqrt{x}+6=(x-2\sqrt{x})-(3\sqrt{x}-6)=\sqrt{x}(\sqrt{x}-2)-3(\sqrt{x}-2)=(\sqrt{x}-2)(\sqrt{x}-3)$
7. $x\sqrt{x}-1=(\sqrt{x})^3-1^3=(\sqrt{x}-1)(x+\sqrt{x}+1)$
8. $x\sqrt{x}-x+\sqrt{x}-1=x(\sqrt{x}-1)+(\sqrt{x}-1)=(\sqrt{x}-1)(x+1)$
9. $x+2\sqrt{x}-15=(x-3\sqrt{x})+(5\sqrt{x}-15)=\sqrt{x}(\sqrt{x}-3)+5(\sqrt{x}-3)=(\sqrt{x}-3)(\sqrt{x}+5)$
10. $x-2\sqrt{x}-3=(x+\sqrt{x})-(3\sqrt{x}+3)=\sqrt{x}(\sqrt{x}+1)-3(\sqrt{x}+1)=(\sqrt{x}+1)(\sqrt{x}-3)$
\(x+\sqrt{x}=\sqrt{x}\left(\sqrt{x}+1\right)\\ x-\sqrt{x}=\sqrt{x}\left(\sqrt{x}-1\right)\\ a+3\sqrt{a}-10=a+5\sqrt{a}-2\sqrt{a}-10=\sqrt{a}\left(\sqrt{a}+5\right)-2\left(\sqrt{a}+5\right)=\left(\sqrt{a}-2\right)\left(\sqrt{a}+5\right)\)
\(x\sqrt{x}+\sqrt{x}-x-1=\left(x\sqrt{x}-x\right)+\left(\sqrt{x}-1\right)=x\left(\sqrt{x}-1\right)+\sqrt{x}-1=\left(\sqrt{x}-1\right)\left(x+1\right)\\ x+\sqrt{x}-2=x+2\sqrt{x}-\sqrt{x}-2=\sqrt{x}\left(\sqrt{x}+2\right)-\left(\sqrt{x}+2\right)=\left(\sqrt{x}-1\right)\left(\sqrt{x}+2\right)\\ x-5\sqrt{x}+6=x-2\sqrt{x}-3\sqrt{x}-6=\sqrt{x}\left(\sqrt{x}-2\right)-3\left(\sqrt{x}-2\right)=\left(\sqrt{x}-3\right)\left(\sqrt{x}-2\right)\)
Mấy bạn còn lại tương tự những bài trên nhé. Nếu còn thắc mắc ở chỗ nào bạn có thể liên hệ mình nhé. Nhớ lần sau bạn tách ra nha, chứ nhiều câu quá.
phân tích đa thức thành nhân tử (với a b x y không âm, a> b)
a) xy - \(y\sqrt{x}\) + \(\sqrt{x}-1\)
b) \(\sqrt{ab}-\sqrt{by}+\sqrt{bx}+\sqrt{ay}\)
c) \(\sqrt{a+b}+\sqrt{a^2+b^2}\)
d) 12 - \(\sqrt{x}\) - x
d: \(=-\left(x+\sqrt{x}-12\right)=-\left(\sqrt{x}+4\right)\left(\sqrt{x}-3\right)\)
1. Phân tích ra thừa số
a.\(\sqrt{ab}-\sqrt{ac}+\sqrt{bc}+b\)
b.x-y-3(\(\sqrt{x}-\sqrt{y}\))
c. \(\sqrt{x^2-y^2}\)-x+y
2. GPT
a.\(\sqrt{\sqrt{5}-\sqrt{3}x}\)=\(\sqrt{8+2\sqrt{15}}\)
b.\(\sqrt{2+\sqrt{3+\sqrt{x}}}=3\)
Bài 2:
a: Ta có: \(\sqrt{\sqrt{5}-x\sqrt{3}}=\sqrt{8+2\sqrt{15}}\)
\(\Leftrightarrow\sqrt{5}-x\sqrt{3}=8+2\sqrt{15}\)
\(\Leftrightarrow x\sqrt{3}=\sqrt{5}-8-2\sqrt{15}\)
\(\Leftrightarrow x=\dfrac{\sqrt{15}-8\sqrt{3}-6\sqrt{5}}{3}\)
b: Ta có: \(\sqrt{2+\sqrt{\sqrt{x}+3}}=3\)
\(\Leftrightarrow\sqrt{\sqrt{x}+3}=7\)
\(\Leftrightarrow\sqrt{x}=46\)
hay x=2116
Phân tích các đa thức sau thành nhân tử
\(\sqrt{ab}-\sqrt{a}-\sqrt{b}+1\)
\(a+\sqrt{a}+2\sqrt{ab}+2\sqrt{b}\)
\(\sqrt{ab}-\sqrt{a}-\sqrt{b}+1\)
\(=\sqrt{a}\left(\sqrt{b}-1\right)-\left(\sqrt{b}-1\right)\)
\(=\left(\sqrt{a}-1\right)\left(\sqrt{b}-1\right)\)
\(\sqrt{ab}-\sqrt{a}-\sqrt{b}+1=\sqrt{a}\left(\sqrt{b}-1\right)-\left(\sqrt{b}-1\right)=\left(\sqrt{a}-1\right)\left(\sqrt{b}-1\right)\)
\(=\sqrt{a}\left(\sqrt{a}+1\right)+2\sqrt{b}\left(\sqrt{a}+1\right)=\left(\sqrt{a}+1\right)\left(\sqrt{a}+2\sqrt{b}\right)\)
\(a+\sqrt{a}+2\sqrt{ab}+2\sqrt{b}\)
\(=\sqrt{a}\left(\sqrt{a}+1\right)+2\sqrt{b}\left(\sqrt{a}+1\right)\)
\(=\left(\sqrt{a}+2\sqrt{b}\right)\left(\sqrt{a}+1\right)\)
phân tích đa thứ thành nhân từ
a)\(x\sqrt{x}+\sqrt{x}-x-1\)
b)\(\sqrt{ab}+2\sqrt{a}+3\sqrt{b}+6\)
a) \(x\sqrt{x}+\sqrt{x}-x-1\)
\(=\left(x\sqrt{x}-x\right)+\left(\sqrt{x}-1\right)\)
\(=x\left(\sqrt{x}-1\right)+\left(\sqrt{x}-1\right)\)
\(=\left(\sqrt{x}-1\right)\left(x+1\right)\)
b) \(\sqrt{ab}+2\sqrt{a}+3\sqrt{b}+6\)
\(=\sqrt{a}\left(\sqrt{b}+2\right)+3\left(\sqrt{b}+2\right)\)
\(=\left(\sqrt{b}+2\right)\left(\sqrt{a}+3\right)\)
Phân tích đa thức thành nhân tử:
a) \(x^2-3\)
b) \(ab+b\sqrt{a}+\sqrt{a}+1\)
a)=(x-√3)(x+√3)
b)=b√a(√a+1)+(√a+1)
=(√a+1)(b√a+1)
Bài 55 (trang 30 SGK Toán 9 Tập 1)
Phân tích thành nhân tử (với a, b, x, y là các số không âm)
a) $a b+b \sqrt{a}+\sqrt{a}+1$;
b) $\sqrt{x^{3}}-\sqrt{y^{3}}+\sqrt{x^{2} y}-\sqrt{x y^{2}}$.
a, \(ab+b\sqrt{a}+\sqrt{a}+1=\sqrt{a}b\left(\sqrt{a}+1\right)+\sqrt{a}+1\)
\(=\left(b\sqrt{a}+1\right)\left(\sqrt{a}+1\right)\)
b, \(\sqrt{x^3}-\sqrt{y^3}+\sqrt{x^2y}-\sqrt{xy^2}\)
\(=\sqrt{x^2}\left(\sqrt{x}+\sqrt{y}\right)-\sqrt{y^2}\left(\sqrt{y}+\sqrt{x}\right)=\left(\left|x\right|-\left|y\right|\right)\left(\sqrt{x}+\sqrt{y}\right)\)
a) \(ab+b\sqrt{a}+\sqrt{a}+1=b\sqrt{a}\left(\sqrt{a}+1\right)+\left(\sqrt{a}+1\right)=\left(b\sqrt{a}+1\right)\left(\sqrt{a}+1\right)\)
b) \(\sqrt{x^3}-\sqrt{y^3}+\sqrt{x^2y}-\sqrt{xy^2}=x\sqrt{x}-y\sqrt{y}+x\sqrt{y}-y\sqrt{x}=x\left(\sqrt{x}+\sqrt{y}\right)-y\left(\sqrt{x}+\sqrt{y}\right)=\left(x-y\right)\left(\sqrt{x}+\sqrt{y}\right)\)
phân tích đa thức thành nhân tử
\(\sqrt{21}+\sqrt{3}+\sqrt{7}+1\) 1
\(a-\sqrt{a}+1\)
\(\sqrt{1-a}+\sqrt{1-a^2}\)
\(\sqrt{21}+\sqrt{3}+\sqrt{7}+1\)
\(=\sqrt{3}\left(\sqrt{7}+1\right)+\left(\sqrt{7}+1\right)\)
\(=\left(\sqrt{7}+1\right)\left(\sqrt{3}+1\right)\)
\(\sqrt{1-a}+\sqrt{1-a^2}\)
\(=\sqrt{1-a}+\sqrt{\left(1-a\right)\left(1+a\right)}\)
\(=\sqrt{1-a}\left(1+\sqrt{1+a}\right)\)
Phân tích ra thừa số :
a) \(3\sqrt{2}-2\sqrt{3}\)
b) \(\sqrt{2}+\sqrt{6}+\sqrt{14}+\sqrt{42}\)
c)\(\dfrac{2\sqrt{3}-\sqrt{6}}{\sqrt{8}-2}\)
a) \(3\sqrt{2}-2\sqrt{3}=\sqrt{6}\left(\sqrt{3}-\sqrt{2}\right)\)
b) \(\sqrt{2}+\sqrt{6}+\sqrt{14}+\sqrt{42}=\sqrt{2}\left(1+\sqrt{3}+\sqrt{7}+\sqrt{21}\right)\)
\(=\sqrt{2}\left(1+\sqrt{3}\right)\left(1+\sqrt{7}\right)\)
c) \(\dfrac{2\sqrt{3}-\sqrt{6}}{\sqrt{8}-2}=\dfrac{\sqrt{3}\left(2-\sqrt{2}\right)}{\sqrt{2}\left(2-\sqrt{2}\right)}=\dfrac{\sqrt{6}}{2}\)
a) \(3\sqrt{2}-2\sqrt{3}=\sqrt{3}.\sqrt{3}.\sqrt{2}-\sqrt{2}.\sqrt{2}.\sqrt{3}=\left(\sqrt{3}-\sqrt{2}\right).\sqrt{6}\)
b) \(\sqrt{2}+\sqrt{6}+\sqrt{14}+\sqrt{42}=\left(\sqrt{3}+1\right)\sqrt{2}+\sqrt{14}\left(\sqrt{3}+1\right)=\sqrt{2}\left(\sqrt{7}+1\right)\left(\sqrt{3}+1\right)\)
c) \(\dfrac{2\sqrt{3}-\sqrt{6}}{\sqrt{8}-2}=\dfrac{\sqrt{3}\left(2-\sqrt{2}\right)}{\sqrt{2}\left(2-\sqrt{2}\right)}=\dfrac{\sqrt{3}}{\sqrt{2}}=\sqrt{\dfrac{9}{4}}\)
phân tích thành nhân tử
\(\sqrt{a^2-b^2}+\sqrt{a-b}\)
\(=\sqrt{a-b}\left(\sqrt{a+b}+1\right)\)
\(=\sqrt{\left(a+b\right)\left(a-b\right)}+\sqrt{a-b
}\)
\(=\sqrt{a-b}\cdot\sqrt{a+b}+\sqrt{a-b}\)
\(=\sqrt{a-b}\cdot\left(\sqrt{a+b}+1\right)\)