Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
2012 SANG
Xem chi tiết
Akai Haruma
10 tháng 9 2023 lúc 23:30

1. $x+\sqrt{x}=\sqrt{x}(\sqrt{x}+1)$

2. $x-\sqrt{x}=\sqrt{x}(\sqrt{x}-1)$

3. $a+3\sqrt{a}-10=(a-2\sqrt{a})+(5\sqrt{a}-10)$

$=\sqrt{a}(\sqrt{a}-2)+5(\sqrt{a}-2)=(\sqrt{a}+5)(\sqrt{a}-2)$

4. $x\sqrt{x}+\sqrt{x}-x-1=(x\sqrt{x}+\sqrt{x})-(x+1)=\sqrt{x}(x+1)-(x+1)$

$=(x+1)(\sqrt{x}-1)$

5. $x+\sqrt{x}-2=(x-\sqrt{x})+(2\sqrt{x}-2)$

$=\sqrt{x}(\sqrt{x}-1)+2(\sqrt{x}-1)=(\sqrt{x}-1)(\sqrt{x}+2)$

 

Akai Haruma
10 tháng 9 2023 lúc 23:32

6. $x-5\sqrt{x}+6=(x-2\sqrt{x})-(3\sqrt{x}-6)=\sqrt{x}(\sqrt{x}-2)-3(\sqrt{x}-2)=(\sqrt{x}-2)(\sqrt{x}-3)$

7. $x\sqrt{x}-1=(\sqrt{x})^3-1^3=(\sqrt{x}-1)(x+\sqrt{x}+1)$

8. $x\sqrt{x}-x+\sqrt{x}-1=x(\sqrt{x}-1)+(\sqrt{x}-1)=(\sqrt{x}-1)(x+1)$

9. $x+2\sqrt{x}-15=(x-3\sqrt{x})+(5\sqrt{x}-15)=\sqrt{x}(\sqrt{x}-3)+5(\sqrt{x}-3)=(\sqrt{x}-3)(\sqrt{x}+5)$

10. $x-2\sqrt{x}-3=(x+\sqrt{x})-(3\sqrt{x}+3)=\sqrt{x}(\sqrt{x}+1)-3(\sqrt{x}+1)=(\sqrt{x}+1)(\sqrt{x}-3)$

datcoder
10 tháng 9 2023 lúc 23:34

\(x+\sqrt{x}=\sqrt{x}\left(\sqrt{x}+1\right)\\ x-\sqrt{x}=\sqrt{x}\left(\sqrt{x}-1\right)\\ a+3\sqrt{a}-10=a+5\sqrt{a}-2\sqrt{a}-10=\sqrt{a}\left(\sqrt{a}+5\right)-2\left(\sqrt{a}+5\right)=\left(\sqrt{a}-2\right)\left(\sqrt{a}+5\right)\)

\(x\sqrt{x}+\sqrt{x}-x-1=\left(x\sqrt{x}-x\right)+\left(\sqrt{x}-1\right)=x\left(\sqrt{x}-1\right)+\sqrt{x}-1=\left(\sqrt{x}-1\right)\left(x+1\right)\\ x+\sqrt{x}-2=x+2\sqrt{x}-\sqrt{x}-2=\sqrt{x}\left(\sqrt{x}+2\right)-\left(\sqrt{x}+2\right)=\left(\sqrt{x}-1\right)\left(\sqrt{x}+2\right)\\ x-5\sqrt{x}+6=x-2\sqrt{x}-3\sqrt{x}-6=\sqrt{x}\left(\sqrt{x}-2\right)-3\left(\sqrt{x}-2\right)=\left(\sqrt{x}-3\right)\left(\sqrt{x}-2\right)\)

 

Mấy bạn còn lại tương tự những bài trên nhé. Nếu còn thắc mắc ở chỗ nào bạn có thể liên hệ mình nhé. Nhớ lần sau bạn tách ra nha, chứ nhiều câu quá.

tamanh nguyen
Xem chi tiết
Nguyễn Lê Phước Thịnh
9 tháng 11 2021 lúc 21:09

d: \(=-\left(x+\sqrt{x}-12\right)=-\left(\sqrt{x}+4\right)\left(\sqrt{x}-3\right)\)

Chi Nguyễn
Xem chi tiết
Nguyễn Lê Phước Thịnh
1 tháng 10 2021 lúc 23:11

Bài 2: 

a: Ta có: \(\sqrt{\sqrt{5}-x\sqrt{3}}=\sqrt{8+2\sqrt{15}}\)

\(\Leftrightarrow\sqrt{5}-x\sqrt{3}=8+2\sqrt{15}\)

\(\Leftrightarrow x\sqrt{3}=\sqrt{5}-8-2\sqrt{15}\)

\(\Leftrightarrow x=\dfrac{\sqrt{15}-8\sqrt{3}-6\sqrt{5}}{3}\)

b: Ta có: \(\sqrt{2+\sqrt{\sqrt{x}+3}}=3\)

\(\Leftrightarrow\sqrt{\sqrt{x}+3}=7\)

\(\Leftrightarrow\sqrt{x}=46\)

hay x=2116

Ngô Hà Minh
Xem chi tiết
๖²⁴ʱƘ-ƔℌŤ༉
14 tháng 8 2019 lúc 21:15

\(\sqrt{ab}-\sqrt{a}-\sqrt{b}+1\)

\(=\sqrt{a}\left(\sqrt{b}-1\right)-\left(\sqrt{b}-1\right)\)

\(=\left(\sqrt{a}-1\right)\left(\sqrt{b}-1\right)\)

Lê Tuấn Nghĩa
14 tháng 8 2019 lúc 21:15

\(\sqrt{ab}-\sqrt{a}-\sqrt{b}+1=\sqrt{a}\left(\sqrt{b}-1\right)-\left(\sqrt{b}-1\right)=\left(\sqrt{a}-1\right)\left(\sqrt{b}-1\right)\)

\(=\sqrt{a}\left(\sqrt{a}+1\right)+2\sqrt{b}\left(\sqrt{a}+1\right)=\left(\sqrt{a}+1\right)\left(\sqrt{a}+2\sqrt{b}\right)\)

๖²⁴ʱƘ-ƔℌŤ༉
14 tháng 8 2019 lúc 21:15

\(a+\sqrt{a}+2\sqrt{ab}+2\sqrt{b}\)

\(=\sqrt{a}\left(\sqrt{a}+1\right)+2\sqrt{b}\left(\sqrt{a}+1\right)\)

\(=\left(\sqrt{a}+2\sqrt{b}\right)\left(\sqrt{a}+1\right)\)

Nguyên Phan
Xem chi tiết
Lê Trang
22 tháng 7 2021 lúc 9:02

a) \(x\sqrt{x}+\sqrt{x}-x-1\) 

\(=\left(x\sqrt{x}-x\right)+\left(\sqrt{x}-1\right)\)

\(=x\left(\sqrt{x}-1\right)+\left(\sqrt{x}-1\right)\)

\(=\left(\sqrt{x}-1\right)\left(x+1\right)\)

b) \(\sqrt{ab}+2\sqrt{a}+3\sqrt{b}+6\)

\(=\sqrt{a}\left(\sqrt{b}+2\right)+3\left(\sqrt{b}+2\right)\)

\(=\left(\sqrt{b}+2\right)\left(\sqrt{a}+3\right)\)

Anh Phương
Xem chi tiết
Nguyễn Cẩm Uyên
21 tháng 11 2021 lúc 20:31

a)=(x-√3)(x+√3)

b)=b√a(√a+1)+(√a+1)

=(√a+1)(b√a+1)

Kim Khánh Linh
Xem chi tiết
Nguyễn Huy Tú
29 tháng 4 2021 lúc 21:39

a, \(ab+b\sqrt{a}+\sqrt{a}+1=\sqrt{a}b\left(\sqrt{a}+1\right)+\sqrt{a}+1\)

\(=\left(b\sqrt{a}+1\right)\left(\sqrt{a}+1\right)\)

b, \(\sqrt{x^3}-\sqrt{y^3}+\sqrt{x^2y}-\sqrt{xy^2}\)

\(=\sqrt{x^2}\left(\sqrt{x}+\sqrt{y}\right)-\sqrt{y^2}\left(\sqrt{y}+\sqrt{x}\right)=\left(\left|x\right|-\left|y\right|\right)\left(\sqrt{x}+\sqrt{y}\right)\)

Khách vãng lai đã xóa
Phạm Bá Huy
28 tháng 5 2021 lúc 21:07

a) (a+1)(ba+1).
b) (x−y)(x+y)

Khách vãng lai đã xóa
Đỗ Văn Công
19 tháng 6 2021 lúc 8:15

a) \(ab+b\sqrt{a}+\sqrt{a}+1=b\sqrt{a}\left(\sqrt{a}+1\right)+\left(\sqrt{a}+1\right)=\left(b\sqrt{a}+1\right)\left(\sqrt{a}+1\right)\)

b) \(\sqrt{x^3}-\sqrt{y^3}+\sqrt{x^2y}-\sqrt{xy^2}=x\sqrt{x}-y\sqrt{y}+x\sqrt{y}-y\sqrt{x}=x\left(\sqrt{x}+\sqrt{y}\right)-y\left(\sqrt{x}+\sqrt{y}\right)=\left(x-y\right)\left(\sqrt{x}+\sqrt{y}\right)\)

Khách vãng lai đã xóa
HuyHoàng
Xem chi tiết
Không Tên
12 tháng 7 2018 lúc 20:00

\(\sqrt{21}+\sqrt{3}+\sqrt{7}+1\)

\(=\sqrt{3}\left(\sqrt{7}+1\right)+\left(\sqrt{7}+1\right)\)

\(=\left(\sqrt{7}+1\right)\left(\sqrt{3}+1\right)\)

\(\sqrt{1-a}+\sqrt{1-a^2}\)

\(=\sqrt{1-a}+\sqrt{\left(1-a\right)\left(1+a\right)}\)

\(=\sqrt{1-a}\left(1+\sqrt{1+a}\right)\)

Emily Nain
Xem chi tiết
Nguyễn Lê Phước Thịnh
2 tháng 7 2021 lúc 17:15

a) \(3\sqrt{2}-2\sqrt{3}=\sqrt{6}\left(\sqrt{3}-\sqrt{2}\right)\)

b) \(\sqrt{2}+\sqrt{6}+\sqrt{14}+\sqrt{42}=\sqrt{2}\left(1+\sqrt{3}+\sqrt{7}+\sqrt{21}\right)\)

\(=\sqrt{2}\left(1+\sqrt{3}\right)\left(1+\sqrt{7}\right)\)

c) \(\dfrac{2\sqrt{3}-\sqrt{6}}{\sqrt{8}-2}=\dfrac{\sqrt{3}\left(2-\sqrt{2}\right)}{\sqrt{2}\left(2-\sqrt{2}\right)}=\dfrac{\sqrt{6}}{2}\)

Ricky Kiddo
2 tháng 7 2021 lúc 17:15

a) \(3\sqrt{2}-2\sqrt{3}=\sqrt{3}.\sqrt{3}.\sqrt{2}-\sqrt{2}.\sqrt{2}.\sqrt{3}=\left(\sqrt{3}-\sqrt{2}\right).\sqrt{6}\)

b) \(\sqrt{2}+\sqrt{6}+\sqrt{14}+\sqrt{42}=\left(\sqrt{3}+1\right)\sqrt{2}+\sqrt{14}\left(\sqrt{3}+1\right)=\sqrt{2}\left(\sqrt{7}+1\right)\left(\sqrt{3}+1\right)\)

c) \(\dfrac{2\sqrt{3}-\sqrt{6}}{\sqrt{8}-2}=\dfrac{\sqrt{3}\left(2-\sqrt{2}\right)}{\sqrt{2}\left(2-\sqrt{2}\right)}=\dfrac{\sqrt{3}}{\sqrt{2}}=\sqrt{\dfrac{9}{4}}\)

tamanh nguyen
Xem chi tiết
Nguyễn Lê Phước Thịnh
28 tháng 10 2021 lúc 21:26

\(=\sqrt{a-b}\left(\sqrt{a+b}+1\right)\)

Đào Phương Linh
28 tháng 10 2021 lúc 21:47

\(=\sqrt{\left(a+b\right)\left(a-b\right)}+\sqrt{a-b }\)
\(=\sqrt{a-b}\cdot\sqrt{a+b}+\sqrt{a-b}\)
\(=\sqrt{a-b}\cdot\left(\sqrt{a+b}+1\right)\)