Câu 1 : Tính:
a) \(\frac{4}{19.21}+\frac{4}{21.23}+\frac{12}{23.29}+\frac{4}{29.31}\)
Tính:
A= \(\dfrac{4}{19.21}+\dfrac{4}{21.23}+\dfrac{12}{23.29}+\dfrac{4}{29.31}\)
\(A=\dfrac{4}{19.21}+\dfrac{4}{21.23}+\dfrac{12}{23.29}+\dfrac{4}{29.31}\)
\(A=2\left(\dfrac{1}{19}-\dfrac{1}{21}+\dfrac{1}{21}-\dfrac{1}{23}+\dfrac{1}{23}-\dfrac{1}{29}+\dfrac{1}{29}-\dfrac{1}{31}\right)\)
\(A=2\left(\dfrac{1}{19}-\dfrac{1}{31}\right)\)
Cái này tự tính được,khuay r t lười đi lấy mt lắm
Theo đề ta có:
A=\(\dfrac{4}{19.21}+\dfrac{4}{21.23}+\dfrac{12}{23.29}+\dfrac{4}{29.31}\)
=> 2.(\(\dfrac{2}{19.21}+\dfrac{2}{21.23}+\dfrac{6}{23.29}+\dfrac{2}{29.31}\))
=> 2. \((\dfrac{2}{19.21}+\dfrac{2}{21.23}+\dfrac{2}{29.31})+\dfrac{6}{23.29}\)
=> 2. \(\left(\dfrac{1}{19}+\dfrac{1}{21}-\dfrac{1}{21}+\dfrac{1}{23}+......+\dfrac{1}{29}-\dfrac{1}{31}\right)\)
=> 2.( \(\dfrac{1}{19}-\dfrac{1}{31}\))
=> 2.( \(\dfrac{31}{589}-\dfrac{19}{589}\))
=> 2. \(\dfrac{12}{589}\)
=> \(\dfrac{24}{589}\)
Vậy A= \(\dfrac{24}{589}\)
Câu 1:Tìm x
\(\frac{x}{12}=\frac{3}{8}.\frac{7}{9};\)\(\frac{7}{x}=\frac{7}{12}.\frac{9}{2}\)
Câu 2:Tính nhanh
\(\frac{4}{25.27}+\frac{4}{27.29}+\frac{4}{29.31}+......+\frac{4}{49.51}\)
\(\frac{1}{25.27}+\frac{1}{27.29}+........+\frac{1}{49.51}\)
Tính nhanh
1)A=\(\frac{7}{10.11}+\frac{7}{11.12}+\frac{7}{12.13}+...+\frac{7}{69.70}\)
2)B=\(\frac{1}{25.27}+\frac{1}{27.29}+\frac{1}{29.31}+...+\frac{1}{73.75}\)
3)C=\(\frac{4}{2.4}+\frac{4}{4.6}+\frac{4}{6.8}+...+\frac{4}{2008.2010}\)
A = \(\frac{7}{10.11}+\frac{7}{11.12}+\frac{7}{12.13}+...+\frac{7}{69.70}\)
=\(7\left(\frac{1}{10.11}+\frac{1}{11.12}+\frac{1}{12.13}+...+\frac{1}{69.70}\right)\)
=\(7\left(\frac{1}{10}-\frac{1}{11}+\frac{1}{11}-\frac{1}{12}+\frac{1}{12}-\frac{1}{13}+...+\frac{1}{69}-\frac{1}{70}\right)\)
=\(7\left(\frac{1}{10}-\frac{1}{70}\right)\)
=\(7.\frac{3}{35}\)
=\(\frac{3}{5}\)
B=\(\frac{1}{25.27}+\frac{1}{27.29}+\frac{1}{29.31}+...+\frac{1}{73.75}\)
=\(\frac{1}{2}\left(\frac{2}{25.27}+\frac{2}{27.29}+\frac{2}{29.31}+...+\frac{2}{73.75}\right)\)
=\(\frac{1}{2}\left(\frac{1}{25}-\frac{1}{27}+\frac{1}{27}-\frac{1}{29}+\frac{1}{29}-\frac{1}{31}+...+\frac{1}{73}-\frac{1}{75}\right)\)
=\(\frac{1}{2}\left(\frac{1}{25}-\frac{1}{75}\right)\)
=\(\frac{1}{2}.\frac{2}{75}\)
=\(\frac{1}{75}\)
C : có ở bên dưới rồi, còn A và B thôi
1) A=7(\(\frac{1}{10}-\frac{1}{11}+\frac{1}{11}-......+\frac{1}{69}-\frac{1}{70}\) )
A=7 ( \(\frac{1}{10}-\frac{1}{70}\))
A=7x 6/70
A=3/5
tính:
a)\(A=\frac{4}{1.2}+\frac{4}{2.3}+\frac{4}{3.4}+...+\frac{4}{2014.2015}\)
(còn nữa)
`A=4/(1.2)+4/(2.3)+4/(3.4)+......+4/(2014.2015)`
`=4(1/(1.2)+1/(2.3)+1/(3.4)+......+1/(2014.2015))`
`=4(1-1/2+1/2-1/3+1/3-1/4+....+1/2014-1/2015)`
`=4(1-1/2015)`
`=4. 2014/2015`
`=8056/2015`
A=4.(1/1.2+1/2.3+...+1/2014.2015)
A=4.(1-1/2+1/2-1/3+...+1/2014-1/2015)
A=4.(1-1/2015)
A=4.2014/2015
A=8056/2015
Giải:
\(A=\dfrac{4}{1.2}+\dfrac{4}{2.3}+\dfrac{4}{3.4}+...+\dfrac{4}{2014.2015}\)
\(A=4.\left(\dfrac{1}{1.2}+\dfrac{1}{2.3}+\dfrac{1}{3.4}+...+\dfrac{1}{2014.2015}\right)\)
\(A=4.\left(\dfrac{1}{1}-\dfrac{1}{2}+\dfrac{1}{2}-\dfrac{1}{3}+\dfrac{1}{3}-\dfrac{1}{4}+...+\dfrac{1}{2014}-\dfrac{1}{2015}\right)\)
\(A=4.\left(\dfrac{1}{1}-\dfrac{1}{2015}\right)\)
\(A=4.\dfrac{2014}{2015}\)
\(A=\dfrac{8056}{2015}\)
Tính:
a) \({\left( {1 + \frac{1}{2} - \frac{1}{4}} \right)^2}.\left( {2 + \frac{3}{7}} \right)\)
b) \(4:{\left( {\frac{1}{2} - \frac{1}{3}} \right)^3}\)
a)
\(\begin{array}{l}{\left( {1 + \frac{1}{2} - \frac{1}{4}} \right)^2}.\left( {2 + \frac{3}{7}} \right)\\ = {\left( {\frac{4}{4} + \frac{2}{4} - \frac{1}{4}} \right)^2}.\left( {\frac{{14}}{7} + \frac{3}{7}} \right)\\ = {\left( {\frac{5}{4}} \right)^2}.\frac{{17}}{7}\\ = \frac{{25}}{{16}}.\frac{{17}}{7}\\ = \frac{{425}}{{112}}\end{array}\)
b)
\(\begin{array}{l}4:{\left( {\frac{1}{2} - \frac{1}{3}} \right)^3}\\ = 4:{\left( {\frac{3}{6} - \frac{2}{6}} \right)^3}\\ = 4:{\left( {\frac{1}{6}} \right)^3}\\ = 4:\frac{1}{{216}}\\ = 4.216\\ = 864\end{array}\)
tìm x, biết
a, \(\left(\frac{11}{12}+\frac{11}{12.23}+\frac{11}{23.24}+...+\frac{11}{89.100}\right)+x=\frac{5}{3}\)
b, \(\left(\frac{2}{11.13}+\frac{2}{13.15}+...+\frac{2}{19.21}\right)-x+4+\frac{221}{231}=\frac{7}{3}\)
Tính:
a) \(\frac{4}{5}\) của 100;
b) \(\frac{1}{4}\) của -8
a) \(\frac{4}{5}\) của 100 là: \(\frac{4}{5}.100=80\)
b) \(\frac{1}{4}\) của -8 là: \(\frac{1}{4}.(-8)=-2\)
Tìm x:
\((\frac{2}{11.13}+\frac{2}{13.15}+...+\frac{2}{19.21})-x+\frac{221}{231}=\frac{4}{3}\)
a)Tìm số tự nhiên a nhỏ nhất sao cho a chia cho 3, cho 5, cho 7 được số dư thứ tự là 2, 4, 6
b) \(\frac{1}{3}+\frac{3}{35}< \frac{x}{210}< \frac{4}{7}+\frac{3}{5}+\frac{1}{3}\)
c)\(\left(\frac{2}{11.13}+\frac{2}{13.15}+...+\frac{2}{19.21}\right)-x+\frac{221}{231}=\frac{4}{3}\)
\(b.\frac{1}{3}+\frac{3}{35}< \frac{x}{210}< \frac{4}{7}+\frac{3}{5}+\frac{1}{3}\)
\(\Leftrightarrow\frac{35+9}{105}< \frac{x}{210}< \frac{60+63+35}{105}\)
\(\Leftrightarrow\frac{44}{105}< \frac{x}{210}< \frac{158}{105}\)
\(\Leftrightarrow\frac{88}{210}< \frac{x}{210}< \frac{316}{210}\)
Suy ra \(x\in\left\{89;90;100;...;313;314;315\right\}\)
\(c.\left(\frac{2}{11.13}+\frac{2}{13.15}+...+\frac{2}{19.21}\right)-x+\frac{221}{231}=\frac{4}{3}\)
\(\Leftrightarrow\left(\frac{1}{11}-\frac{1}{13}+\frac{1}{13}-\frac{1}{15}+...+\frac{1}{19}-\frac{1}{21}\right)-x+\frac{221}{231}=\frac{4}{3}\)
\(\Leftrightarrow\frac{1}{11}-\frac{1}{21}-x+\frac{221}{231}=\frac{4}{3}\)
\(\Leftrightarrow\frac{21-11-231x+221}{231}=\frac{308}{231}\)
\(\Leftrightarrow-231x=308-21+11-221\)
\(\Leftrightarrow-231x=77\)
\(\Leftrightarrow x=-\frac{77}{231}=-\frac{1}{3}\)
^^