cho 2 số phân biệt a,b thoả mãn a^2+4a=b^2+4b=3. Tính giá trị của biểu thức P=a^3+b^3+3(a^2+b^2)
Cho các số thực a,b phân biệt thỏa mãn: \(^{a^2+4b=b^2+4a=7}\)
a, Tính giá trị của S= \(a+b\)
b, Tính giá trị của Q=\(a^3+b^3\)
a^2+4b=b^2+4a
=> (a-b)(a+b)-4(a+b)=0
=>(a-b-4)(a+b)=0
Đến đây đơn giản mà ^^ em ko làm được thì ib nhé.
Bài làm:
Ta có: \(a^2+4b=b^2+4a\)
\(\Leftrightarrow\left(a^2-b^2\right)-\left(4a-4b\right)=0\)
\(\Leftrightarrow\left(a-b\right)\left(a+b\right)-4\left(a-b\right)=0\)
\(\Leftrightarrow\left(a-b\right)\left(a+b-4\right)=0\)
\(\Leftrightarrow\orbr{\begin{cases}a-b=0\\a+b-4=0\end{cases}\Leftrightarrow}\orbr{\begin{cases}a=0\\a+b=4\end{cases}}\)
+ Nếu \(a=0\Rightarrow4b=7\Leftrightarrow b=\frac{7}{4}\)
Thay vào tính được:
a) \(S=a+b=0+\frac{7}{4}=\frac{7}{4}\)
b) \(Q=a^3+b^3=0^3+\left(\frac{7}{4}\right)^3=\frac{343}{64}\)
+ Nếu \(a+b=4\Rightarrow b=4-a\)
Thay vào tính được:
a) \(S=a+b=4\)
b) \(b=4-a\Leftrightarrow a^2+4\left(4-a\right)=7\)
\(\Leftrightarrow a^2-4a+9=0\)
\(\Leftrightarrow\left(a-2\right)^2+5=0\)
\(\Rightarrow∄a\)
MinhDang xem lại chứ hình như em làm sai ấy ?
Cho các số thực a,b,c thỏa mãn a+b+c/2=a+b-7/4c=b+c+3/4a=a+c+4=4b . Tính giá trị của biểu thức A=20a+11b+2017c
Câu hỏi của nguyen phuong thao - Toán lớp 7 - Học toán với OnlineMath
cho các số a,b,c thỏa mãn 3a-2b/4=2c-4a/3=4b-3c/2 tính giá trị biểu thức A=3a+2b-c/3a-2b+c + 2a^2-b^2+c^2/2a^2+b^2-c^2
làm ơn trả lời hộ mk với ah mai mk phải nộp bài r
a. Cho số thực x,y thoả mãn: \(x+y=2\left(\sqrt{x-3}+\sqrt{y-3}\right)\). Giá trị nhỏ nhất của biểu thức \(P=4\left(x^2+y^2\right)+15xy\)
b. Cho các số thực a,b,c thoả mãn \(\left\{{}\begin{matrix}-8+4a-2b+c>0\\8+4a+2b+c< 0\end{matrix}\right.\). Số giao điểm của đồ thị hàm số \(y=x^3+ax^2+bx+c\) và trục Ox.
a. Đề bài em ghi sai thì phải
Vì:
\(x+y=2\left(\sqrt{x-3}+\sqrt{y-3}\right)\)
\(\Leftrightarrow\left(x-3-2\sqrt{x-3}+1\right)+\left(y-3-2\sqrt{y-3}+1\right)+4=0\)
\(\Leftrightarrow\left(\sqrt{x-3}-1\right)^2+\left(\sqrt{y-3}-1\right)^2+4=0\) (vô lý)
b.
Xét hàm \(f\left(x\right)=x^3+ax^2+bx+c\)
Hàm đã cho là hàm đa thức nên liên tục trên mọi khoảng trên R
Hàm bậc 3 nên có tối đa 3 nghiệm
\(f\left(-2\right)=-8+4a-2b+c>0\)
\(f\left(2\right)=8+4a+2b+c< 0\)
\(\Rightarrow f\left(-2\right).f\left(2\right)< 0\Rightarrow f\left(x\right)\) luôn có ít nhất 1 nghiệm thuộc (-2;2)
\(\lim\limits_{x\rightarrow+\infty}f\left(x\right)=x^3\left(1+\dfrac{a}{x}+\dfrac{b}{x^2}+\dfrac{c}{x^3}\right)=+\infty.\left(1+0+0+0\right)=+\infty\)
\(\Rightarrow\) Luôn tồn tại 1 số thực dương n đủ lớn sao cho \(f\left(n\right)>0\)
\(\Rightarrow f\left(2\right).f\left(n\right)< 0\Rightarrow f\left(x\right)\) luôn có ít nhất 1 nghiệm thuộc \(\left(2;n\right)\) hay \(\left(2;+\infty\right)\)
Tương tự \(\lim\limits_{x\rightarrow-\infty}f\left(x\right)=-\infty\Rightarrow f\left(-2\right).f\left(m\right)< 0\Rightarrow f\left(x\right)\) luôn có ít nhất 1 nghiệm thuộc \(\left(-\infty;-2\right)\)
\(\Rightarrow f\left(x\right)\) có đúng 3 nghiệm pb \(\Rightarrow\) hàm cắt Ox tại 3 điểm pb
Cho a và b là các số thỏa mãn: a>b>0 và a^3-a^2b+ab^2-6b^3=0
Tính giá trị biểu thức A=(a^4-4b^4)/(b^4-4a^4)
\(a^3-a^2b+ab^2-6b^3=0\)
\(\Leftrightarrow\left(a-2b\right)\left(a^2+ab+3b^2\right)=0\left(1\right)\)
Vì a>b>0 =>a2+ab+3b2>0 nên từ (1) ta có a=2b
Vậy biểu thức \(A=\frac{a^4-4b^4}{b^4-4a^4}=\frac{16b^4-4b^4}{b^4-64b^4}=\frac{12b^4}{-63b^4}=-\frac{4}{21}\)
bài 1:a, tính giá trị của biểu thức 4a-b/3a+3+4b-a/3b-3 với a-b=3; a≠-1; b≠1.
b, cho đa thức f(x)=a^2+bx+c thỏa mãn f(3)=f(-3).Chứng minh rằng f(x)=f(-x)
Cho các số a,b,c khác 0 thoả mãn A×B trên a+b =b×c trên b+c =c×a trên c+a. Tính giá trị của biểu thức P=a×b^2+b×c^2+c×a^2 trên a^3+b^3+c^3
Ta có: \(\frac{ab}{a+b}=\frac{bc}{b+c}=\frac{ca}{c+a}\)
\(\Rightarrow\frac{abc}{c\left(a+b\right)}=\frac{abc}{a\left(b+c\right)}=\frac{abc}{b\left(c+a\right)}\)
\(\Rightarrow c\left(a+b\right)=a\left(b+c\right)=b\left(c+a\right)\)
\(\Rightarrow ac+bc=ab+ac=bc+ab\)
Lại có: \(ac+bc=ab+ac\)\(\Rightarrow bc=ab\)\(\Rightarrow a=c\) (1)
\(ab+ac=bc+ab\)\(\Rightarrow ac=bc\)\(\Rightarrow a=b\) (2)
Từ (1) và (2) \(\Rightarrow a=b=c\)
Ta có: \(P=\frac{ab^2+bc^2+ca^2}{a^3+b^3+c^3}=\frac{a.a^2+b.b^2+c.c^2}{a^3+b^3+c^3}=\frac{a^3+b^3+c^3}{a^3+b^3+c^3}=1\)
Cho 3 số a,b,c thoả mãn a+b+c=2. Tìm giá trị nhỏ nhất của biểu thức A=a^2+b^2+c^2
Áp dụng BĐT Bun-hia-cop-xki ta có:
\(\left(a^2+b^2+c^2\right)\left(1^2+1^2+1^2\right)\ge\left(a+b+c\right)^2\)
\(\Leftrightarrow a^2+b^2+c^2\ge\frac{\left(a+b+c\right)^2}{3}\)
\(\Leftrightarrow a^2+b^2+c^2\ge\frac{4}{3}\)
Dấu '=' xảy ra khi \(\hept{\begin{cases}a=b=c\\a+b+c=2\end{cases}\Leftrightarrow a=b=c=\frac{2}{3}}\)
Vậy \(A_{min}=\frac{4}{3}\)khi \(a=b=c=\frac{2}{3}\)
\(\left(a+b+c\right)^2=a^2+b^2+c^2+2\left(ab+bc+ca\right)\)
Suy ra \(A=\left(a+b+c\right)^2-2\left(ab+bc+ca\right)\)
\(=4-2\left(ab+bc+ca\right)\)
Ta có BĐT \(ab+bc+ca\le\frac{\left(a+b+c\right)^2}{3}\).Thay vào tìm được min