Tìm x và y nguyên thỏa mãn x4-2y2=1
Cho hai số thực x và y thỏa mãn y-x=1 tìm gtnn của A=x^2+y^2
\(y-x=1\Rightarrow x=y-1\)
\(\Rightarrow x^2+y^2=\left(y-1\right)^2+y^2\)
\(=y^2-2y+1+y^2\)
\(=2y^2-2y+1\)
\(=2\left(y^2-y+\frac{1}{2}\right)\)
\(=2\left(y^2-2y\frac{1}{2}+\frac{1}{4}\right)+\frac{1}{2}\)
\(=2\left(y-\frac{1}{2}\right)^2+\frac{1}{2}\ge\frac{1}{2}\forall y\)
Dấu"=" xảy ra khi \(2\left(y-\frac{1}{2}\right)^2=0\Rightarrow y=\frac{1}{2}\)
Vì \(y-x=1\)nên
\(\Rightarrow\frac{1}{2}-x=1\Rightarrow x=-\frac{1}{2}\)
Vậy \(Min_A=\frac{1}{2}\Leftrightarrow x=-\frac{1}{2};y=\frac{1}{2}\)
Tìm các cặp số x,y thỏa mãn
X=y²+y² và y=2xy
Cho Alà 1 tập hợp số nguyên gồm 607số nguyên dương đôi một khác nhau và mỗi số nhỏ hơn 2021.Chưng minh rằng trong tập hợp A luôn tìm được hai phần tử x,y(x>y)thỏa mãn x-y thuộc {3,6,9}
giúp mình với
Chia dãy các số nguyên dương từ 1 đến 2020 thành 202 đoạn (1;10) (11;20) ... (2011;2020).
Vì A có 607 số nguyên dương khác nhau chia thành 202 đoạn nên theo nguyên lí Đi - Rich - Lê tồn tại ít nhất 1 đoạn chứa 4 số trong 607 số trên
Vì trong 4 số trên luôn tồn tại 2 số cùng số dư khi chia cho 3 , gọi 2 số đó là x , y ( x > y )
suy ra x - y chia hết cho 3
Mà x - y < 9
suy ra x , y thuộc (3;6;9)
a)tìm các cặp số nguyên x;y thỏa mãn (2x-)(x+1)=|y+1|
dạnh toán này quá cao siêu quá,ko phù hợp vs em...hs lớp 6
tìm các giá trị x,y thỏa mãn :\(\frac{1}{x}-\frac{y}{8}=\frac{1}{16}\) và x,y thuộc N
Ta có: \(\frac{1}{x}-\frac{y}{8}=\frac{1}{16}\)
=> \(\frac{1}{x}=\frac{1}{16}+\frac{y}{8}\)
=> \(\frac{1}{x}=\frac{1+2y}{16}\)
=> 1.16 = x(1 + 2y)
=> x(1 + 2y) = 16 = 1 . 16 = 2 . 8 = 4.4
Vì 1 + 2y là số lẽ nên 1 + 2y \(\in\){1; -1} => x \(\in\){16; -16}
Lập bảng :
1 + 2y | 1 | -1 |
x | 16 | -16 |
y | 0 | -1 |
Vậy ...
:
1x =116
=> =>
X = 1.16:1 =16
Y=1.8:16= 0.5
y8 =116
Vậy X = 16 ; Y=0.5
:
Giải
Ta có 1/x - y/8 = 1/16
=> 1/x = 1/16 + y/8
=> 1/x = 1/16 + 2y/16
=> 1/x = 2y+1/16
=> 1.16 = (2y+1).x
=> 16 = (2y+1).x
Ta thấy Ư(16)={1;2;4;8;16}
Mà 2y +1 là số lẻ nên suy ra 2y+1=1 và x=16
=> y=0 và x=16
Vậy x=16 và y=0 thoả mãn
tìm x,y nguyên thỏa mãn x+y+xy=2
x + y + xy = 2
<=> x + xy + y = 2
<=> x + y(x + 1) = 2
<=> x + 1 + y(x + 1) = 2 + 1
<=> (x + 1)(y + 1) = 3
=> x + 1 và y + 1 phải là ước của 3
Ư(3) = { - 3; - 1; 1; 3 }
Nếu x + 1 = - 3 thì y + 1 = - 1 => x = - 4 thì y = - 2
Nếu x + 1 = - 1 thì y + 1 = - 3 => x = - 2 thì y = - 4
Nếu x + 1 = 1 thì y + 1 = 3 => x = 0 thì y = 2
Nếu x + 1 = 3 thì y + 1 = 1 => x = 2 thì y = 0
Vậy ( x;y ) = { ( -4;-2 ) ; ( -2;-4 ); ( 0;2 ) ; ( 2;0 ) }
x+y+xy=2
x.1+y.1+x.y=2
=> x.y.(1+1)=2
=>x.y.2=2
=>x.y=2:2
=> x.y=1
=> x=1 hoăc -1
y=1 hoặc -1
Vậy x = 1 hoặc -1, y= 1 hoặc -1
tìm các số nguyên x y thỏa mãn:
(x+y)2=(x-1)(y+1)