Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
Phương Uyên Phan Thị
Xem chi tiết
phạm ngọc anh
20 tháng 8 2021 lúc 14:52

đề bài đâu bạn

Ngoc Bảo
Xem chi tiết
Ngân Nguyễn
Xem chi tiết
Vuy năm bờ xuy
1 tháng 6 2021 lúc 23:33

undefined

Nam Trân
Xem chi tiết
Hoàng Ngọc Trâm
Xem chi tiết

Các số được điền vào các ô theo thứ tự từ trái sang phải là:

-1; - \(\dfrac{1}{3}\);  \(\dfrac{2}{3}\)\(\dfrac{4}{3}\)

_zerotwo00_
Xem chi tiết
Chang Lê
Xem chi tiết
Nguyễn Lê Phước Thịnh
7 tháng 1 2022 lúc 7:24

a: \(3H_2+Fe_2O_3\rightarrow2Fe+3H_2O\)

b: \(n_{Fe_2O_3}=\dfrac{16}{160}=0.1\left(mol\right)\)

\(\Leftrightarrow n_{H_2O}=n_{H_2}=0.1\cdot3=0.3\left(mol\right)\)

\(v_{H_2}=0.3\cdot22.4=6.72\left(lít\right)\)

Nhiên Kha
Xem chi tiết
Hoàng Kiều Quỳnh Anh
Xem chi tiết
Nguyễn Hoàng Minh
14 tháng 12 2021 lúc 15:20

\(1,ĐK:x\ge2\\ PT\Leftrightarrow\sqrt{3x-6}+x-2-\left(\sqrt{2x-3}-1\right)=0\\ \Leftrightarrow\dfrac{3\left(x-2\right)}{\sqrt{3x-6}}+\left(x-2\right)-\dfrac{2\left(x-2\right)}{\sqrt{2x-3}+1}=0\\ \Leftrightarrow\left(x-2\right)\left(\dfrac{3}{\sqrt{3x-6}}-\dfrac{2}{\sqrt{2x-3}+1}+1\right)=0\\ \Leftrightarrow\left[{}\begin{matrix}x=2\left(tm\right)\\\dfrac{3}{\sqrt{3x-6}}-\dfrac{2}{\sqrt{2x-3}+1}+1=0\left(1\right)\end{matrix}\right.\)

Với \(x>2\Leftrightarrow-\dfrac{2}{\sqrt{2x-3}+1}>-\dfrac{2}{1+1}=-1\left(3x-6\ne0\right)\)

\(\Leftrightarrow\left(1\right)>0-1+1=0\left(vn\right)\)

Vậy \(x=2\)

Nguyễn Hoàng Minh
14 tháng 12 2021 lúc 15:23

\(2,ĐK:x\ge-1\)

Đặt \(\left\{{}\begin{matrix}\sqrt{x+1}=a\\\sqrt{x^2-x+1}=b\end{matrix}\right.\left(a,b\ge0\right)\Leftrightarrow a^2+b^2=x^2+2\)

\(PT\Leftrightarrow2a^2+2b^2-5ab=0\\ \Leftrightarrow\left(a-2b\right)\left(2a-b\right)=0\\ \Leftrightarrow\left[{}\begin{matrix}a=2b\\b=2a\end{matrix}\right.\)

Với \(a=2b\Leftrightarrow x+1=4x^2-4x+4\left(vn\right)\)

Với \(b=2a\Leftrightarrow4x+4=x^2-x+1\Leftrightarrow x^2-5x-3=0\Leftrightarrow\left[{}\begin{matrix}x=\dfrac{5+\sqrt{37}}{2}\left(tm\right)\\x=\dfrac{5-\sqrt{37}}{2}\left(tm\right)\end{matrix}\right.\)

Vậy ...

Nguyễn Hoàng Minh
14 tháng 12 2021 lúc 15:25

\(3,ĐK:x\ge-1\\ PT\Leftrightarrow3\left(x^2-x+1\right)-2\left(x+1\right)=5\sqrt{x^3+1}\) 

Đặt \(\left\{{}\begin{matrix}\sqrt{x+1}=a\\\sqrt{x^2-x+1}=b\end{matrix}\right.\left(a,b\ge0\right)\)

\(PT\Leftrightarrow3b^2-2a^2=5ab\\ \Leftrightarrow2a^2+5ab-3b^2=0\\ \Leftrightarrow\left[{}\begin{matrix}a=2b\\a=-3b\left(vn\right)\end{matrix}\right.\Leftrightarrow a=2b\Leftrightarrow\left[{}\begin{matrix}x=\dfrac{5+\sqrt{37}}{2}\\x=\dfrac{5-\sqrt{37}}{2}\end{matrix}\right.\left(\text{giống bài 2}\right)\)

Sơn Nguyễn
Xem chi tiết
Thanh Hoàng Thanh
1 tháng 4 2022 lúc 10:10

Câu 2:

\(TH1:m+2=0. \Leftrightarrow m=-2.\)

Thay \(m=-2\) vào BPT ta có:

\(0x+\left(-2\right)^2-3>0.\\ \Leftrightarrow4-3>0.\)

\(\Leftrightarrow1>0\) (Luôn đúng).

Vậy \(m=-2\) thì BPT có nghiệm.

\(TH2:m+2\ne0.\Leftrightarrow m\ne-2.\)

Khi đó BPT có nghiệm \(x>\dfrac{3-m^2}{m+2}.\) 

Vậy bất phương trình có nghiệm với mọi giá trị thực của m.