Cho tam giac ABC có độ dài 3 cạnh là a,b,c thỏa mãn \(a^3+b^3+c^3=3abc.\)Khi đó số đo của góc ABC
cho tam giác abc có độ dài 3 cạnh a,b,c thỏa mãn a^3+b^3+c^3 = 3abc khi đó số đo góc abc là
giúp mình vs
cần gấp lắm m.n à
cho tam giác ABC có độ dài cạnh là a, b, c thoã mãn \(a^3+b^3+c=3abc\). Tính số đo góc ABC
ta co \(a^3+b^3+c^3=3abc\)
=>\(a^3+b^3+c^3-3abc=0\)
=>(a+b+c)(\(a^2+b^2+c^2-ab-bc-ac\))=0(cach phan h da thuc thanh nhan tu ban tu lam nhe or tra mang cung co )
Ma a+b+c khac 0
=> \(a^2+b^2+c^2-ab-bc-ac=0\)
=> \(2a^2+2b^2+2c^2-2ab-2bc-2ac=0\)
=>\(\left(a-b\right)^2+\left(b-c\right)^2+\left(c-a\right)^2=0\)
=> a=b=c
=> Tam giac ABC la tam giac deu
=> goc A=goc B =goc C=60 do
Cho a,b,c là độ dài 3 cạnh của tam giác ABC thỏa mãn hệ thức: a³ + b³ + c³ = 3abc. Hỏi tam giác ABC là tam giác gì?
\(a^3-b^3-c^3=3abc\)
\(\Rightarrow a^3-b^3-c^3-3abc=0\)
\(\Rightarrow\left(a+b+c\right)\left(a^2+b^2+c^2-ab-bc-ca\right)=0\)
Mà \(a+b+c\ne0\) (độ dài 3 cạnh của 1 tam giác)
\(\Rightarrow a^2+b^2+c^2-ab-bc-ac=0\)
\(\Leftrightarrow2a^2+2b^2+2c^2-2ab-2bc-2ac=0\)
\(\Leftrightarrow\left(a-b\right)^2+\left(b-c\right)^2+\left(c-a\right)^2=0\)
\(\Rightarrow\left(a-b\right)^2=0;\left(b-c\right)^2=0;\left(c-a\right)^2=0\)
\(\Rightarrow a=b=c\)
Do đó tam giác ABC là tam giác đều
Cho tam giác ABC có độ dài ba cạnh là: a,b,c. Thỏa mãn điều kiện a3+b3+c3= 3abc. Chứng minh tam giác ABC là tam giác đều
thực hiện trừ 2 vế ta (vế trái cho vế phải) ta được
(a+b+c).(a^2+b^2+c^2 -ab-bc-ca)=0
nên hoặc a+b+c=0 hoặc nhân tử còn lại bằng 0
mà a,b,c là 3 cạnh 1 tam giác nên a+b+c>0
vậy a^2+b^2+c^2 -ab-bc-bc-ca=0
đặt đa thức đó bằng A
A=0 nên 2xA=0
phân tích thành hằng đẳng thức ta có (a-b)2+(b-c)2+(c-a)2=0
nên a=b=c vậy là tam giác đều
Lời giải:
$a^3+b^3+c^3=3abc$
$\Leftrightarrow (a+b)^3-3ab(a+b)+c^3-3abc=0$
$\Leftrightarrow (a+b)^3+c^3-3ab(a+b+c)=0$
$\Leftrightarrow (a+b+c)[(a+b)^2-c(a+b)+c^2]-3ab(a+b+c)=0$
$\Leftrightarrow (a+b+c)(a^2+b^2+c^2-ab-bc-ac)=0$
Hiển nhiên $a+b+c>0$ với mọi $a,b,c$ là độ dài 3 cạnh tam giác.
$\Rightarrow a^2+b^2+c^2-ab-bc-ac=0$
$\Leftrightarrow 2a^2+2b^2+2c^2-2ab-2bc-2ac=0$
$\Leftrightarrow (a-b)^2+(b-c)^2+(c-a)^2=0$
Do mỗi số $(a-b)^2; (b-c)^2; (c-a)^2\geq 0$ với mọi $a,b,c>0$.
$\Rightarrow$ để tổng của chúng bằng $0$ thì:
$(a-b)^2=(b-c)^2=(c-a)^2=0$
$\Rightarrow a=b=c$
$\Rightarrow ABC$ là tam giác đều.
Cho tam giác có độ dài 3 cạnh là a, b, c thỏa mãn: a^3+ b^3+c^3 =3abc. Chứng minh: Tam giác đó đều.
thực hiện trừ 2 vế ta (vế trái cho vế phải) ta được
(a+b+c).(a2+b2+c2-ab-bc-ca)=0
nên hoặc a+b+c=0 hoặc nhân tử còn lại bằng 0
mà a,b,c là 3 cạnh 1 tam giác nên a+b+c>0
vậy a2+b2+c2-ab-bc-bc-ca=0
đặt đa thức đó bằng A
A=0 nên 2xA=0
phân tích thành hằng đẳng thức ta có (a-b)2+(b-c)2+(c-a)2=0
nên a=b=c vậy là tam giác đều
\(a^3+b^3+c^3-3abc\)\(=0\)
\(\Rightarrow\left(a+b\right)^3-3a^2b-3ab^2+c^3-3abc=0\)
\(\Rightarrow\left(a+b\right)^3+c^3-3a^2b-3ab^2-3abc=0\)
\(\Rightarrow\left(a+b+c\right).\left[\left(a+b\right)^2-c\left(a+b\right)+c^2\right]-3ab\left(a+b+c\right)=0\)
\(\Rightarrow\left(a+b+c\right).\left(a^2+2ab+b^2-ac-bc+c^2-3ab\right)=0\)
\(\Rightarrow\left(a+b+c\right).\left(a^2+b^2+c^2-ab-bc-ac\right)=0\)
Vì a,b,c là độ dài 3 cạnh của tam giác nên a,b,c đều lớn hơn 0
\(\Rightarrow a+b+c\ne0\)
\(\Rightarrow a^2+b^2+c^2-ab-bc-ac=0\)
\(\Rightarrow2\left(a^2+b^2+c^2-ab-bc-ac\right)=0\)
\(\Rightarrow2a^2+2b^2+2c^2-2ab-2bc-2ac=0\)
\(\Rightarrow\left(a^2-2ab+b^2\right)+\left(b^2-2bc+c^2\right)+\left(c^2-2ac+a^2\right)=0\)
\(\Rightarrow\left(a-b\right)^2+\left(b-c\right)^2+\left(c-a\right)^2=0\) \(\left(1\right)\)
Vì \(\hept{\begin{cases}\left(a-b\right)^2\ge0\\\left(b-c\right)^2\ge0\\\left(c-a\right)^2\ge0\end{cases}}\)
\(\Rightarrow\left(a-b\right)^2+\left(b-c\right)^2+\left(c-a\right)^2\ge0\)(với mọi a,b,c)
Để được (1) thì:
\(\hept{\begin{cases}\left(a-b\right)^2=0\\\left(b-c\right)^2=0\\\left(c-a\right)^2=0\end{cases}}\)
\(\Rightarrow a=b=c\)( tam giác đều) \(\left(\text{Đ}PCM\right)\)
Cho tam giác ABC có các cạnh lần lượt là a b c thỏa mãn a3 + b3 + c3 = 3abc
tính góc ABC
\(a^3+b^3+c^3=3abc< =>a^3+b^3+c^3-3abc=0< =>\left(a+b+c\right)\left(a^2+b^2+c^2-ab-bc-ac\right)=0\)
vì a,b,c là độ dài 3 cạnh của tam giác ABC => a,b,c > 0 => a+b+c > 0
=>\(a^2+b^2+c^2-ab-bc-ac=0=>\frac{1}{2}.2\left(a^2+b^2+c^2-ab-bc-ac\right)=0\)
=> \(2a^2+2b^2+2c^2-2ab-2bc-2ac=0=>\left(a^2-2ab+b^2\right)+\left(b^2-2bc+c^2\right)+\left(c^2-2ca+a^2\right)=0\)
=>(a-b)2+(b-c)2+(c-a)2=0
tổng 3 bt ko âm=0 <=> chúng đều = 0
<=>a-b=b-c=c-a=0
<=>a=b=c
<=>tam giác ABC là tam giác đều
vậy góc ABC=600
Cho Tam giác ABC có góc A = góc B + 2 góc C và độ dài 3 cạnh của tam giác là 3 số tự nhiên liên tiếp.
a) Tính độ dài các cạnh của tam giác.
b) Tính số đo của góc A.
cho tam giác ABC vuông tại A, có độ dài của các cạnh thỏa mãn hệ thức: BC^2 = (căn 3 + 1)AC^2 + ( căn 3 - 1 ) AB.AC. Tính số đo góc ABC
1. \(2cosB=\sqrt{2}\Rightarrow cosxB=\dfrac{\sqrt{2}}{2}\Rightarrow B=45^0\)
2. \(A=180^0-\left(B+C\right)=60^0\)
3. \(r=\dfrac{S}{p}=\sqrt{3}\)
4. \(R=\dfrac{abc}{4S}=\dfrac{65}{8}\)