tính: (x-3y2)3
a) Cho hai đa thức: M = 2x2 – 2xy – 3y2 + 1; N = x2 – 2xy + 3y2 – 1
Tính M + N; M – N.
b) Cho hai đa thức: P(x) = x3 – 6x + 2; Q(x) = 2x2 - 4x3 + x - 5
+ Tính P(x) + Q(x)
+ Tính P(x) - Q(x)
a, \(M+N=2x^2+x^2-2xy-2xy-3y^2+3y^2+1-1=3x^2-4xy\)
\(M-N=2x^2-x^2-2xy+2xy-3y^2-3y^2+1+1=x^2-6y^2+2\)
b, \(P\left(x\right)+Q\left(x\right)=x^3-4x^3+2x^2-6x+x+2-5=-3x^3+2x^2-5x-3\)
\(P\left(x\right)-Q\left(x\right)=x^3+4x^3-2x^2-6x-x+2+5=5x^3-2x^2-7x+7\)
Tìm giá trị của biểu thức
A= ( 5x2+3y2) phần( 10x2- 3y2 ) tại x phần 3 = y phần 5
\(A=\dfrac{5x^2+3y^2}{10x^2-3y^2}\)Thay \(\dfrac{x}{3}=\dfrac{y}{5}=k\Rightarrow x=3k;y=5k\)vào ta đc
\(A=\dfrac{5.9k^2+3.25k^2}{10.9k^2-3.25k^2}=\dfrac{120k^2}{15k^2}=8\)
(Nghỉ dịch từ ngày 28/2/2022)
Bài 1:
a) Cho hai đa thức: M = 2x2 – 2xy – 3y2 + 1; N = x2 – 2xy + 3y2 – 1
Tính M + N; M – N.
b) Cho hai đa thức: P(x) = x3 – 6x + 2; Q(x) = 2x2 - 4x3 + x - 5
+ Tính P(x) + Q(x)
+ Tính P(x) - Q(x)
Bài 2: Tìm x biết:
a) (x - 8 )( x3+ 8) = 0; b) (4x - 3) – ( x + 5) = 3(10 - x)
Bài 3: Cho đa thức: P(x) = 5x3 + 2x4 – x2 + 3x2 – x3 – 2x4 + 1 – 4x3.
a) Thu gọn và xắp sếp các hạng tử của đa thức trên theo lũy thừa giảm của biến.
b) Tính P(1) và P(–1).
Bài 4: Tính nhanh (nếu có thể):
Bài 5: Cho tam giác ABC có AB = AC = 5cm, BC = 6cm. Đường trung tuyến AM xuất phát từ đỉnh A của tam giác ABC.
a) Chứng minh ΔAMB = ΔAMC và AM là tia phân giác của góc A.
b) Chứng minh AM vuông góc với BC.
c) Tính độ dài các đoạn thẳng BM và AM.
d) Từ M vẽ ME AB (E thuộc AB) và MF AC (F thuộc AC). Tam giác MEF là tam giác gì? Vì sao?
Bài 6: Cho ΔABC cân có AB = AC = 5cm, BC = 8cm. Kẻ AH vuông góc với BC.
a) Chứng minh: HB = HC.
b) Tính độ dài AH.
c) Kẻ HD vuông góc với AB (D∈AB), kẻ HE vuông góc với AC (E∈AC).
Chứng minh ΔHDE cân.
d) So sánh HD và HC.
Bài 2:
a: \(\left(x-8\right)\left(x^3+8\right)=0\)
=>\(\left[{}\begin{matrix}x-8=0\\x^3+8=0\end{matrix}\right.\)
=>\(\left[{}\begin{matrix}x=8\\x^3=-8\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=8\\x=-2\end{matrix}\right.\)
b: \(\left(4x-3\right)-\left(x+5\right)=3\left(10-x\right)\)
=>\(4x-3-x-5=30-3x\)
=>3x-8=30-3x
=>6x=38
=>\(x=\dfrac{38}{6}=\dfrac{19}{3}\)
Bài 6:
a: Xét ΔAHB vuông tại H và ΔAHC vuông tại H có
AB=AC
AH chung
Do đó: ΔAHB=ΔAHC
=>HB=HC
b: Ta có: HB=HC
H nằm giữa B và C
Do đó: H là trung điểm của BC
=>\(HB=HC=\dfrac{8}{2}=4\left(cm\right)\)
ΔAHB vuông tại H
=>\(AH^2+HB^2=AB^2\)
=>\(AH^2=5^2-4^2=9\)
=>\(AH=\sqrt{9}=3\left(cm\right)\)
c: Ta có: ΔAHB=ΔAHC
=>\(\widehat{BAH}=\widehat{CAH}\)
Xét ΔADH vuông tại D và ΔAEH vuông tại E có
AH chung
\(\widehat{DAH}=\widehat{EAH}\)
Do đó: ΔADH=ΔAEH
=>HD=HE
=>ΔHDE cân tại H
d: Ta có: HD=HE
HE<HC(ΔHEC vuông tại E)
Do đó:HD<HC
Làm tính nhân:
a) x 2 − 49 2 x + 1 . 3 7 − x với x ≠ − 1 2 và x ≠ 7
b) 3 y 2 − 2 y y 2 − 1 . 1 − y 4 ( 2 − 3 y ) 3 với y ≠ ± 1 và y ≠ 2 3
a) − 3 ( x + 7 ) 2 x + 1 b) y ( y 2 + 1 ) ( 3 y − 2 ) 2
a. 3x2+5x-3y2-5y
b.3x(3-x)-6(x-3)
c.x2+4x-21
a) 3x² + 5x - 3y² - 5y
= (3x² - 3y²) + (5x - 5y)
= 3(x² - y²) + 5(x + y)
= 3(x + y)(x - y) + 5(x + y)
= (x + y)[3(x - y) + 5]
= (x + y)(3x - 3y + 5)
b) 3x(3 - x) - 6(x - 3)
= 3x(3 - x) + 6(3 - x)
= (3 - x)(3x + 6)
= 3(3 - x)(x + 2)
c) x² + 4x - 21
= x² + 4x + 4 - 25
= (x² + 4x + 4) - 25
= (x + 2)² - 5²
= (x + 2 - 5)(x + 2 + 5)
= (x - 3)(x + 7)
G=3(x2+y2)-(x3+y3)+1 biết x+y=2
H=8x3-12x2y+16xy2-y3+12x2-12xy+3y2+6x-3y+11 với 2x-y=9
Tính bằng hằng đẳng thức
Để tính bằng hằng đẳng thức, ta sẽ thay thế giá trị của x + y và 2x - y vào biểu thức G và H. Thay x + y = 2 vào biểu thức G: G = 3(x^2 + y^2) - (x^3 + y^3) + 1 = 3(2^2) - (2^3) + 1 = 12 - 8 + 1 = 5 Thay 2x - y =9 vào biểu thức
H: H =8x^3-12x^2y+16xy^2-y^3+12x^2-12xy+3y^2+6x-3y+11 =8(9)^{33}-12(9)^{22}+(16)(9)(9)^22-(9)^33+(12)(9)^22-(12)(9)(9)+(32)+(81)-(27)+11 =(58320)-(11664)+(1296)-(729)+(10368)-(972)+81+54-27+11 =(58320)-(11664)+(1296)-(729)+(10368)-(972)+81+54-27+11 =(58720) Vậy kết quả là G=5 và H=58720.
Tính nhanh
a,(2x-3)2
b,(x-3y)2
c, (2x+3y) (2x-3y)-(2x+y)2
d,(x+3y2)2
M=(1/2x^2y)×(2x^3y2) a) thu gọn rồi tìm bậc, hệ số, phần biến b) tính giá trị của đơn thức M đã thu gọn tại x = 1 và y = 3
a: \(M=x^5y^3\)
Hệ số là 1
Bậc là 8
Phần biến là x^5;y^3
b: Khi x=1 và y=3 thì M=1^5*3^3=27
Điền vào chỗ trống: 3 x 2 + 6 x y 2 – 3 y 2 + 6 x 2 y = 3 . . . x + y
A. x + y + 2 x y
B. x – y + 2 x y
C. x – y + x y
D. x – y + 3 x y
3 x 2 + 6 x y 2 - 3 y 2 + 6 x 2 y = 3 x 2 - 3 y 2 + 6 x y 2 + 6 x 2 y = 3 x 2 - y 2 + 6 x y x + y = 3 x - y x + y + 6 x y x + y = 3 x - y + 6 x y x + y = 3 x - y + 2 x y x + y
Vậy chỗ trống là x - y + 2 x y
Đáp án cần chọn là: B
Điền vào chỗ trống: 3 x 2 + 6 x y 2 – 3 y 2 + 6 x 2 y = 3(…)(x + y)
A. (x + y + 2xy)
B. (x – y + 2xy)
C. (x – y + xy)
D. (x – y + 3xy)
3 x 2 + 6 x y 2 – 3 y 2 + 6 x 2 y = ( 3 x 2 – 3 y 2 ) + ( 6 x y 2 + 6 x 2 y ) = 3 ( x 2 – y 2 ) + 6 x y ( y + x )
= 3(x – y)(x + y) + 6xy(x + y)
= [3(x – y) + 6xy](x + y) = 3(x – y + 2xy)(x + y)
Vậy chỗ trống là (x – y + 2xy)
Đáp án cần chọn là: B