Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
Mật Ong Trà Đào
Xem chi tiết
Akai Haruma
29 tháng 12 2022 lúc 19:22

1. Áp dụng TCDTSBN ta có:

$\frac{x-1}{3}=\frac{y-2}{4}=\frac{z+5}{6}=\frac{x-1+(y-2)-(z+5)}{3+4-6}$

$=\frac{x+y-z-8}{1}=\frac{8-8}{1}=0$

$\Rightarrow x-1=y-2=z+5=0$

$\Rightarrow x=1; y=2; z=-5$

 

Akai Haruma
29 tháng 12 2022 lúc 19:25

2.

Có:

$\frac{x+1}{2}=\frac{y+3}{4}=\frac{z+5}{6}=\frac{2x+2}{4}=\frac{3y+9}{12}=\frac{4z+20}{24}$

Áp dụng tính chất dãy tỉ số bằng nhau ta có:

$\frac{x+1}{2}=\frac{y+3}{4}=\frac{z+5}{6}=\frac{2x+2}{4}=\frac{3y+9}{12}=\frac{4z+20}{24}=\frac{2x+2+3y+9+4z+20}{4+12+24}=\frac{2x+3y+4z+31}{40}=\frac{9+31}{40}=1$

Suy ra:

$x+1=2.1=2\Rightarrow x=1$

$y+3=1.4=4\Rightarrow y=1$

$z+5=6.1=6\Rightarrow z=1$

 

$

Akai Haruma
29 tháng 12 2022 lúc 19:27

3.

Có:

$\frac{x+1}{3}=\frac{y+2}{-4}=\frac{z-3}{5}=\frac{3x+3}{9}=\frac{2y+4}{-8}=\frac{4z-12}{20}$

Áp dụng TCDTSBN:

$\frac{x+1}{3}=\frac{y+2}{-4}=\frac{z-3}{5}=\frac{3x+3}{9}=\frac{2y+4}{-8}=\frac{4z-12}{20}=\frac{3x+3+2y+4+4z-12}{9+(-8)+20}=\frac{3x+2y+4z-5}{21}=\frac{47-5}{21}=2$

Suy ra:

$x+1=3.2=6\Rightarrow x=5$

$y+2=(-4).2=-8\Rightarrow y=-10$

$z-3=5.2=10\Rightarrow z=13$

linhchi buithi
Xem chi tiết
Trần Thanh Phương
6 tháng 7 2019 lúc 15:37

a) Áp dụng tính chất của dãy tỉ số bằng nhau :

\(\frac{x}{3}=\frac{y}{4}=\frac{z}{5}=\frac{x+2y+4z}{3+8+20}=\frac{-93}{31}=-3\)

\(\Leftrightarrow\left\{{}\begin{matrix}\frac{x}{3}=-3\\\frac{y}{4}=-3\\\frac{z}{5}=-3\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x=-9\\y=-12\\z=-15\end{matrix}\right.\)

Vậy...

b) Áp dụng tính chất của dãy tỉ số bằng nhau :

\(\frac{x}{3}=\frac{y}{4}=\frac{z}{5}=\frac{-2x+y-3z}{-6+4-15}=\frac{34}{-17}=-2\)

\(\Leftrightarrow\left\{{}\begin{matrix}\frac{x}{3}=-2\\\frac{y}{4}=-2\\\frac{z}{5}=-2\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x=-6\\y=-8\\z=-10\end{matrix}\right.\)

Vậy...

Ngọc Lan Tiên Tử
6 tháng 7 2019 lúc 15:44

a,\(\left\{{}\begin{matrix}\frac{x}{3}=\frac{y}{4}=\frac{z}{5}\\x+2y+4z=-93\end{matrix}\right.\)

=> \(\left\{{}\begin{matrix}\frac{x}{3}=\frac{y}{4}\\\frac{x}{3}=\frac{z}{5}\\x+2y+4z=--93\end{matrix}\right.\)

=> \(\left\{{}\begin{matrix}4x-3y=0\\5x-3z=0\\x+2y+4z=-93\end{matrix}\right.\)

=> \(\left\{{}\begin{matrix}x=\frac{3}{4}y\left(1\right)\\5x-3z=0\left(2\right)\\x+2y+4z=-93\left(3\right)\end{matrix}\right.\)

Thay (1) vào (2) và (3)

=> \(\left\{{}\begin{matrix}5.\frac{3}{4}y-3z=0\\\frac{3}{4}y+2y+4z=-93\end{matrix}\right.\)

=> \(\left\{{}\begin{matrix}\frac{15}{4}y-3z=0\\\frac{11}{4}y+4z=-93\end{matrix}\right.\)

Thấy Bonking làm rồi nên => ko làm nữa :v

Viên Viên
Xem chi tiết
pham thi binh
3 tháng 10 2017 lúc 20:03

Chương I  : Số hữu tỉ. Số thựcchúc bn hc tốt nha haha

Nguyễn Hoàng Anh Thư
3 tháng 10 2017 lúc 19:05

\(\dfrac{x}{3}=\dfrac{y}{4}=\dfrac{z}{5}\)\(x+2y+4z=-93\)

\(\dfrac{x}{3}=\dfrac{y}{4}=\dfrac{z}{5}\Rightarrow\dfrac{x+2y+4z}{3+2.4+4.5}=\dfrac{-93}{31}=-3\)

\(\dfrac{x}{3}=-3\Rightarrow x=-3.3=-9\)

\(\dfrac{y}{4}=-3\Rightarrow y=-3.4=-12\)

\(\dfrac{z}{5}=-3\Rightarrow z=-3.5=-15\)

Huỳnh Ngọc Lộc
13 tháng 11 2017 lúc 16:40

Ta có : \(\dfrac{x}{3}=\dfrac{y}{4}=\dfrac{z}{5}\)và x+2y+4z=-93

Như vậy ta suy ra được nhờ váo tính chất của dãy tỉ số bằng nhau :

\(\dfrac{x}{3}=\dfrac{y}{4}=\dfrac{z}{5}\Rightarrow\dfrac{x}{3}=\dfrac{2y}{8}=\dfrac{4z}{20}=\dfrac{x+2y+4z}{3+8+20}=\dfrac{-93}{31}=-3\)\(\dfrac{x}{3}=-3\Rightarrow x=3\left(-3\right)\Rightarrow x=-9\)

\(\dfrac{2y}{8}=-3\Rightarrow2y=8\left(-3\right)\Rightarrow2y=-24\Rightarrow y=\dfrac{-24}{2}\Rightarrow y=-12\)

\(\dfrac{4z}{20}=-3\Rightarrow4z=20\left(-3\right)\Rightarrow4z=-60\Rightarrow z=\dfrac{-60}{4}\Rightarrow z=-15\)

 ✪ B ✪ ả ✪ o  ✪
Xem chi tiết
Nguyễn Đình Dũng
28 tháng 9 2016 lúc 21:44

Ta có: \(\frac{x}{3}=\frac{y}{5}\Rightarrow\frac{x}{12}=\frac{y}{20}\)\(\frac{y}{4}=\frac{x}{7}\Rightarrow\frac{x}{35}=\frac{y}{20}\)

=> \(\frac{x}{12}=\frac{y}{20}=\frac{z}{35}\)

Áp dụng t/c dãy tỉ số bằng nhau. ta có:

\(\frac{x}{12}=\frac{y}{20}=\frac{z}{35}=\frac{3x}{36}=\frac{2y}{40}=\frac{z}{35}=\frac{3x-2y+z}{36-40+35}=\frac{93}{31}=3\)

\(\Rightarrow\begin{cases}\frac{x}{12}=3\\\frac{y}{20}=3\\\frac{z}{35}=3\end{cases}\Rightarrow\begin{cases}x=36\\y=60\\z=105\end{cases}}\)

Ken Tom Trần
28 tháng 9 2016 lúc 21:45

\(\frac{x}{3}=\frac{y}{5}\Rightarrow\frac{x}{12}=\frac{y}{20}\)(*)

\(\frac{y}{4}=\frac{z}{7}\Rightarrow\frac{y}{20}=\frac{z}{35}\)(**)

Từ (*) và (**) ta có:

\(\frac{x}{12}=\frac{y}{20}=\frac{z}{35}\)

hay \(\frac{3x}{36}=\frac{2y}{40}=\frac{z}{35}\)

Áp dụng tính chất của dãy tỉ số bằng nhau ta có :

\(\frac{3x}{36}=\frac{2y}{40}=\frac{z}{35}=\frac{3x-2y+z}{36-40+35}=\frac{93}{31}=3\)

\(\Rightarrow\begin{cases}x=3.36:3=36\\y=3.40:2=60\\z=3.35=105\end{cases}\)

Vậy x=36;y=60 và z=105

Nguyễn Huy Tú
28 tháng 9 2016 lúc 21:50

Giải:

Ta có:

\(\frac{x}{3}=\frac{y}{5}\Rightarrow\frac{x}{12}=\frac{y}{20}\)

\(\frac{y}{4}=\frac{z}{7}\Rightarrow\frac{y}{20}=\frac{z}{35}\)

\(\Rightarrow\frac{x}{12}=\frac{y}{20}=\frac{z}{35}\)

\(\Rightarrow\frac{3x}{36}=\frac{2y}{40}=\frac{z}{36}\)

Áp dụng tính chất dãy tỉ số bằng nhau ta có:

\(\frac{3x}{36}=\frac{2y}{40}=\frac{z}{36}=\frac{3x-2y+z}{36-40+36}=\frac{93}{31}=3\)

+) \(\frac{x}{12}=3\Rightarrow x=36\)

+) \(\frac{y}{20}=3\Rightarrow y=60\)

+) \(\frac{z}{35}=3\Rightarrow z=105\)

Vậy bộ số \(\left(x,y,z\right)\) là \(\left(36,60,105\right)\)

zxc bgd
Xem chi tiết
Bùi Hoàng Đức Long
Xem chi tiết
ILoveMath
Xem chi tiết
Nguyễn Việt Lâm
9 tháng 11 2021 lúc 17:09

\(37xy=x^2+y^2+5x^2y^2+60\ge2xy+5x^2y^2+60\)

\(\Rightarrow5x^2y^2-35xy+60\le0\)

\(\Rightarrow5\left(xy-3\right)\left(xy-4\right)\le0\)

\(\Rightarrow\left[{}\begin{matrix}xy=3\\xy=4\end{matrix}\right.\) 

Thế vào pt đầu \(\Rightarrow...\)

titanic
Xem chi tiết
Beautiful Angel
Xem chi tiết
Hung nguyen
28 tháng 4 2017 lúc 9:03

Ta đặt: \(\left\{{}\begin{matrix}\dfrac{1}{x^2}=a\\\dfrac{1}{y^2}=b\\\dfrac{1}{z^2}=c\end{matrix}\right.\)\(\Rightarrow\sqrt{abc}=abc=1\)

Ta có: \(\dfrac{1}{\sqrt{a}+\sqrt{ab}+1}+\dfrac{1}{\sqrt{b}+\sqrt{bc}+1}+\dfrac{1}{\sqrt{c}+\sqrt{ca}+1}\)

\(=\dfrac{1}{\sqrt{a}+\sqrt{ab}+1}+\dfrac{1}{\sqrt{b}+\dfrac{1}{\sqrt{a}}+1}+\dfrac{1}{\dfrac{1}{\sqrt{ab}}+\sqrt{ca}+1}\)

\(=\dfrac{1}{\sqrt{a}+\sqrt{ab}+1}+\dfrac{\sqrt{a}}{\sqrt{ba}+1+\sqrt{a}}+\dfrac{1}{1+\sqrt{ab}+\sqrt{a}}=1\)

Quay lại bài toán, sau khi đặt bài toán trở thành:

\(P=\dfrac{1}{2b+a+3}+\dfrac{1}{2c+b+3}+\dfrac{1}{2a+c+3}\)

\(=\dfrac{1}{\left(a+b\right)+\left(b+1\right)+2}+\dfrac{1}{\left(b+c\right)+\left(c+1\right)+2}+\dfrac{1}{\left(c+a\right)+\left(a+1\right)+2}\)

\(\le\dfrac{1}{2}\left(\dfrac{1}{\sqrt{a}+\sqrt{ab}+1}+\dfrac{1}{\sqrt{b}+\sqrt{bc}+1}+\dfrac{1}{\sqrt{c}+\sqrt{ca}+1}\right)=\dfrac{1}{2}\)

Hung nguyen
28 tháng 4 2017 lúc 21:49

Cái đó t cố tình bỏ đấy. B phải tự làm chứ chẳng lẽ t làm hết??