\(4x-15\sqrt{x}+14=0\)
Giair phương trình :
a,\(4x-15\sqrt{x}+14=0\)
b,\(\sqrt{x+1}+1=4x^2+\sqrt{3x}\)
\(a,Đk:x\ge0\\ PT\Leftrightarrow4x-8\sqrt{x}-7\sqrt{x}+14=0\\ \Leftrightarrow\left(\sqrt{x}-2\right)\left(4\sqrt{x}-7\right)=0\\ \Leftrightarrow\left[{}\begin{matrix}x=4\\x=\dfrac{49}{4}\end{matrix}\right.\left(tm\right)\\ b,ĐK:x\ge0\\ PT\Leftrightarrow\sqrt{x+1}-\sqrt{3x}+1-4x^2=0\\ \Leftrightarrow\dfrac{1-2x}{\sqrt{x+1}+\sqrt{3x}}+\left(1-2x\right)\left(2x+1\right)=0\\ \Leftrightarrow\left(1-2x\right)\left(\dfrac{1}{\sqrt{x+1}+\sqrt{3x}}+2x+1\right)=0\\ \Leftrightarrow\left[{}\begin{matrix}x=\dfrac{1}{2}\left(tm\right)\\\dfrac{1}{\sqrt{x+1}+\sqrt{3x}}+2x+1=0\left(1\right)\end{matrix}\right.\)
Với \(x\ge0\Leftrightarrow\left(1\right)>0\)
Vậy PT có nghiệm \(x=\dfrac{1}{2}\)
giải các pt sau:
a, \(\sqrt{x^2+2x+4}=\sqrt{2-x}\)
b, \(\sqrt{x-2}-3\sqrt{x^2-4}=0\)
c, \(\sqrt{3x^2+6x+7}+\sqrt{5x^2+10x+14}=4-2x-x^2\)
d, \(2\sqrt{3x+1}-\sqrt{x-1}=2\sqrt{2x-1}\)
e, \(\sqrt{2x-1}+x^2-3x+1=0\)
f, \(\sqrt{4x^2-7x-2}=2\sqrt{x^2-1+1}-1\)
g, \(\sqrt{x^2+2x-15}+\sqrt{x^2-8x+15}=\sqrt{4x^2-18x+18}\)
h,\(\sqrt{2-x}+\sqrt{3-x}=2\sqrt{4-x}\)
Giải phương trình và bất phương trình:
a) \(\sqrt{4x-12}-\sqrt{9x-27}+\sqrt{\dfrac{25x-75}{4}-3=0}\)
b) \(\dfrac{\sqrt{x}-2}{\sqrt{x}+1}\) ≤ \(\dfrac{-3}{4}\)
c) \(\sqrt{9x-45}-14\sqrt{\dfrac{x-5}{49}}+\dfrac{1}{4}\sqrt{4x-20}=3\)
a: ĐKXĐ: x>=3
Sửa đề: \(\sqrt{4x-12}-\sqrt{9x-27}+\sqrt{\dfrac{25x-75}{4}}-3=0\)
=>\(2\sqrt{x-3}-3\sqrt{x-3}+\dfrac{5}{2}\sqrt{x-3}-3=0\)
=>\(\dfrac{3}{2}\sqrt{x-3}=3\)
=>\(\sqrt{x-3}=2\)
=>x-3=4
=>x=7(nhận)
b: ĐKXĐ: x>=0
\(\dfrac{\sqrt{x}-2}{\sqrt{x}+1}< =-\dfrac{3}{4}\)
=>\(\dfrac{\sqrt{x}-2}{\sqrt{x}+1}+\dfrac{3}{4}< =0\)
=>\(\dfrac{4\sqrt{x}-8+3\sqrt{x}+3}{4\left(\sqrt{x}+1\right)}< =0\)
=>\(7\sqrt{x}-5< =0\)
=>\(\sqrt{x}< =\dfrac{5}{7}\)
=>0<=x<=25/49
c: ĐKXĐ: x>=5
\(\sqrt{9x-45}-14\sqrt{\dfrac{x-5}{49}}+\dfrac{1}{4}\sqrt{4x-20}=3\)
=>\(3\sqrt{x-5}-14\cdot\dfrac{\sqrt{x-5}}{7}+\dfrac{1}{4}\cdot2\cdot\sqrt{x-5}=3\)
=>\(\dfrac{3}{2}\sqrt{x-5}=3\)
=>\(\sqrt{x-5}=2\)
=>x-5=4
=>x=9(nhận)
giải phương trình sau
a) x\(^2\)-3=0
b) x-9\(\sqrt{x+14}\)=0
c) 4x-\(\sqrt{x^2}\)-4x+4=0
a) \(x^2-3=0\Leftrightarrow x^2=3\Leftrightarrow\left\{{}\begin{matrix}\sqrt{x^2}=\sqrt{3}\\\sqrt{x^2}=-\sqrt{3}\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x=\sqrt{3}\\x=-\sqrt{x}\end{matrix}\right.\) vậy \(x=\sqrt{3};x=-\sqrt{3}\)
b) \(x-9\sqrt{x+14}=0\) \(\Leftrightarrow\) \(x=9\sqrt{x+14}\) \(\Leftrightarrow\) \(x^2=81\sqrt{\left(x+14\right)^2}\)
th1 : \(x\ge-14\) thì \(x^2=81\sqrt{\left(x+14\right)^2}\) \(\Leftrightarrow\) \(x^2=81\left(x+14\right)\)
\(\Leftrightarrow\) \(x^2=81x+1134\) \(\Leftrightarrow\) \(x^2-81x-1134=0\)
giải phương trình ra ta có : \(\left\{{}\begin{matrix}x_1=\dfrac{81+9\sqrt{137}}{2}\left(tmđk\right)\\x_2=\dfrac{81-9\sqrt{137}}{2}\left(loại\right)\end{matrix}\right.\)
th2 : \(x< -14\) thì \(x^2=81\sqrt{\left(x+14\right)^2}\) \(\Leftrightarrow\) \(x^2=81\left(-x-14\right)\)
\(\Leftrightarrow\) \(x^2=-81x-1134\) \(\Leftrightarrow\) \(x^2+81x+1134=0\)
giải phương trình ta được : \(\left\{{}\begin{matrix}x_1=-18\left(tmđk\right)\\x_2=-63\left(tmđk\right)\end{matrix}\right.\)
vậy \(x=\dfrac{81+9\sqrt{137}}{2};x=-18;x=-63\)
c) \(4x-\sqrt{x^2}-4x+4=0\)
th1 : \(x\ge0\) thì \(4x-\sqrt{x^2}-4x+4=0\) \(\Leftrightarrow\) \(4x-x-4x+4=0\)
\(\Leftrightarrow\) \(-x+4=0\Leftrightarrow x=4\)
th2 : \(x< 0\) thì \(4x-\sqrt{x^2}-4x+4=0\) \(\Leftrightarrow\) \(4x+x-4x+4=0\)
\(\Leftrightarrow x+4=0\Leftrightarrow x=-4\)
vậy \(x=-4;x=4\)
\(x^2-5x+14-4\sqrt{x+1}=0\Leftrightarrow(x^2-4x+4)-(x+1-2.2.\sqrt{x+1}+4)+6=0\Leftrightarrow(x-2)^2-(\sqrt{x+1}-2)^2+6=0\Leftrightarrow tính\)
d) \(\sqrt{x^2-12x+36}-x=3\)
e) \(\sqrt{x^2-4x+5}-1=x\)
f) \(\sqrt{x^2-6x+9}+x=3\)
h) \(\sqrt{18x}+\sqrt{32x}-14=0\)
k) \(\sqrt{6x-3}+2=\sqrt{3}\)
h: \(\sqrt{18x}+\sqrt{32x}-14=0\)
\(\Leftrightarrow7\sqrt{2x}=14\)
hay x=2
a)\(\sqrt{4x^2-4x+1}=x-1\)
b)\(\sqrt{9x^2+18}+2\sqrt{x^2+2}-\sqrt{25x^2+50}+3=0\)
c)\(\sqrt{x-5}+\frac{14-x}{3+\sqrt{x-5}}=3\)
a) \(\sqrt{4x^2-4x+1}=x-1\)(ĐKXĐ : \(x\ge1\))
\(\Leftrightarrow\sqrt{\left(2x-1\right)^2}=x-1\Leftrightarrow\left|2x-1\right|=x-1\left(1\right)\)
Với \(x\ge1\), pt (1) \(\Leftrightarrow2x-1=x-1\Leftrightarrow x=0\)(loại)Với \(x\le-\frac{1}{2}\), pt (2) \(\Leftrightarrow1-2x=x-1\Leftrightarrow x=\frac{2}{3}\)(loại)Vậy phương trình vô nghiệm.
b) \(\sqrt{9x^2+18}+2\sqrt{x^2+2}-\sqrt{25x^2+50}+3=0\)
\(\Leftrightarrow3\sqrt{x^2+2}+2\sqrt{x^2+2}-5\sqrt{x^2+2}+3=0\)
\(\Leftrightarrow3=0\)(vô lí)
Vậy phương trình vô nghiệm.
c) \(\sqrt{x-5}+\frac{14-x}{3+\sqrt{x-5}}=3\)(ĐKXĐ : \(x\ge5\))
\(\Leftrightarrow3\sqrt{x-5}+x-5+14-x=9+3\sqrt{x-5}\)
\(\Leftrightarrow9=9\)(luôn đúng)
Vậy phương trình luôn luôn có nghiệm với mọi \(\hept{\begin{cases}x\in R\\x\ge5\end{cases}}\)
Giải phương trình
a) \(\sqrt{12x^2+12x+19}+\sqrt{20x^2+20x+14}=6-4x-4x^2\)
b) \(\left(x+\dfrac{1}{x}\right)-4\left(\sqrt{x}+\dfrac{1}{\sqrt{x}}\right)+6=0\)
b:
ĐKXĐ: x>0
\(\Leftrightarrow\left(\sqrt{x}+\dfrac{1}{\sqrt{x}}\right)^2-2-4\left(\sqrt{x}+\dfrac{1}{\sqrt{x}}\right)+6=0\)
\(\Leftrightarrow\left(\sqrt{x}+\dfrac{1}{\sqrt{x}}-2\right)^2=0\)
\(\Leftrightarrow x+1-2\sqrt{x}=0\)
=>x=1
Giải phương trình
a) \(\sqrt{12x^2+12x+19}+\sqrt{20x^2+20x+14}=6-4x-4x^2\)
b) \(\left(x+\dfrac{1}{x}\right)-4\left(\sqrt{x}+\dfrac{1}{\sqrt{x}}\right)+6=0\)
a) ta có \(\sqrt{12x^2+12x+19}+\sqrt{20x^2+20x+14}=-4x^2-4x+6\)
\(\Leftrightarrow\sqrt{12\left(x+\dfrac{1}{2}\right)^2+16}+\sqrt{20\left(x+\dfrac{1}{2}\right)^2+9}=-\left(2x+1\right)^2+7\)ta có : \(VT\ge\sqrt{16}+\sqrt{9}=7\) và \(VT\le7\)
\(\Rightarrow VT=VP\) \(\Leftrightarrow x=\dfrac{-1}{2}\) vậy \(x=\dfrac{-1}{2}\)
b) điều kiện \(x>0\)
ta có : \(\left(x+\dfrac{1}{x}\right)-4\left(\sqrt{x}+\dfrac{1}{\sqrt{x}}\right)+6=0\)
\(\Leftrightarrow\left(\sqrt{x}+\dfrac{1}{\sqrt{x}}\right)^2-4\left(\sqrt{x}+\dfrac{1}{\sqrt{x}}\right)+4=0\)
\(\Leftrightarrow\left(\sqrt{x}+\dfrac{1}{\sqrt{x}}-2\right)^2=0\) \(\Leftrightarrow\sqrt{x}+\dfrac{1}{\sqrt{x}}-2=0\)
\(\Leftrightarrow\sqrt{x}+\dfrac{1}{\sqrt{x}}=2\Leftrightarrow\dfrac{x+\sqrt{x}}{\sqrt{x}}=2\Leftrightarrow x+\sqrt{x}=2\sqrt{x}\)
\(\Leftrightarrow x-\sqrt{x}=0\Leftrightarrow\sqrt{x}\left(\sqrt{x}-1\right)=0\) \(\Leftrightarrow\left[{}\begin{matrix}\sqrt{x}=0\\\sqrt{x}-1=0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=0\left(L\right)\\x=1\left(N\right)\end{matrix}\right.\)
vậy \(x=1\)
Giải phương trình
a) \(\sqrt{12x^2+12x+19}+\sqrt{20x^2+20x+14}=6-4x-4x^2\)
b) \(\left(x+\dfrac{1}{x}\right)-4\left(\sqrt{x}+\dfrac{1}{\sqrt{x}}\right)+6=0\)
b:
ĐKXĐ: x>0
\(\Leftrightarrow\left(\sqrt{x}+\dfrac{1}{\sqrt{x}}\right)^2-2-4\left(\sqrt{x}+\dfrac{1}{\sqrt{x}}\right)+6=0\)
\(\Leftrightarrow\left(\sqrt{x}+\dfrac{1}{\sqrt{x}}-2\right)^2=0\)
\(\Leftrightarrow x+1-2\sqrt{x}=0\)
=>x=1