xác định m để (P): \(y=-x^2\)và (D): \(y=x+m-2\)cắt nha tại hai điểm nằm về hai phía của trục tung
cho đường thẳng (d) : y=2x+m và parabol (P) : y=x^2 . Tìm m để (d) cắt (P) tại hai điểm nằm về hai phía của trục tung
Pt hoành độ giao điểm:
\(x^2=2x+m\Leftrightarrow x^2-2x-m=0\) (1)
(d) cắt (P) tại 2 điểm nằm về 2 phía trục tung khi và chỉ khi (1) có 2 nghiệm trái dấu
\(\Leftrightarrow ac< 0\Leftrightarrow-m< 0\Rightarrow m>0\)
Cho parabol (P) : y = -x^2 và đường thẳng (d) có hệ số góc m đi qua điểm M(-1 ; -2) .
a). Chứng minh rằng với mọi giá trị của m (d) luôn cắt (P) tại hai điểm A , B phân biệt
b). Xác định m để A,B nằm về hai phía của trục tung
Cho parabol (P) : y = -x^2 và đường thẳng (d) có hệ số góc m đi qua điểm M(-1 ; -2) .
a). Chứng minh rằng với mọi giá trị của m (d) luôn cắt (P) tại hai điểm A , B phân biệt
b). Xác định m để A,B nằm về hai phía của trục tung
a: (d) có hệ số góc là m nên (d): y=mx+b
Thay x=-1 và y=-2 vào (d), ta được:
\(m\cdot\left(-1\right)+b=-2\)
=>b-m=-2
=>b=m-2
=>(d): y=mx+m-2
Phương trình hoành độ giao điểm là:
\(-x^2=mx+m-2\)
=>\(-x^2-mx-m+2=0\)
=>\(x^2+mx+m-2=0\)(1)
\(\text{Δ}=m^2-4\cdot1\cdot\left(m-2\right)\)
\(=m^2-4\left(m-2\right)\)
\(=m^2-4m+8=\left(m-2\right)^2+4>=4\forall m\)
=>(P) luôn cắt (d) tại hai điểm phân biệt
b: Để (P) cắt (d) tại hai điểm nằm về hai phía so với trục tung thì phương trình (1) phải có hai nghiệm phân biệt trái dấu
=>1(m-2)<0
=>m-2<0
=>m<2
cho parabol (P):y=x\(^2\) và đường thẳng (d):y=2x-m+3 tìm m để (P) và (d) cắt nhau tại hai điểm nằm về hai phía của trục tung
PTHĐGĐ là:
x^2-2x+m-3=0
Để (P) cắt (d) hai điểm phân biệt nằm về hai phía của trục tung thì m-3<0
=>m<3
cho đường thẳng (d) : y=2x+m và parabol (P) : y=x^2 . Tìm m để (d) cắt (P) tại hai điểm nằm về hai phía của trục tung
Cho parabol (P): y = x 2 và đường thẳng d: y = (m + 2)x – m – 1. Tìm m để d cắt (P) tại hai điểm phân biệt nằm về hai phía trục tung
A. m < −1
B. m < −2
C. m > −1
D. −2 < m < −1
Phương trình hoành độ giao điểm của d và (P): x 2 = (m + 2)x – m – 1
↔ x 2 − (m + 2)x + m + 1 = 0 (1)
(d) cắt (P) tại hai điểm phân biệt nằm về hai phía của trục tung khi và chỉ khi phương trình (1) có hai nghiệm phân biệt trái dấu ↔ ac < 0 ↔ m + 1 < 0
↔ m < −1
Vậy m < −1
Đáp án: A
Cho d : y = (m-1)x + m^2 +1 và (P) : y = x^2. chứng minh d cắt P tại hai điểm phân biệt nằm về hai phía của trục tung
PTHĐGĐ là:
x^2-(m-1)x-m^2-1=0
Vì a*c=-m^2-1<0 với mọi m
nên (P) luôn cắt (d) tại hai điểm phân biệt nằm về hai phía của trục tung
1 ,Cho đt y = x -3m+1 (d1) và y = 2x -2 (d2). Tìm m để hai đt (d1) và (d2) cắt nhau tại 1 điểm nằm phía trên trục hoành
2, Cho (P) y = x2 và (d) y= -2(m-2)+2m-1
xác định m để (d) cắt (P) tại 2 điểm nằm bên phải trục tung
Giúp mình với, mình cần gấpppp
bài 2 :(P):y = x bình và đt (d ):y = 2x - m bình + 9
a;Tìm m để đường thẳng d cắt P tại hai điểm nằm về hai phía của trục tung
Cho Parabol (P): y=x2 và đường thẳng (d): y=(m-1)x+m+4. Tìm m để đường thẳng (d) cắt (P) tại hai điểm phân biệt nằm về 2 phía của trục tung
Xét phương trình hoành độ giao điểm
\(x^2=\left(m-1\right)x+m+4\Leftrightarrow x^2-\left(m-1\right)x-m-4=0\text{ }\left(\text{*}\right)\)
để d cắt P tại hai điểm phân biệt nằm ở hai phía của trục tung thì phương trình (*) có hai nghiệm trái dấu
khi đó điều kiện \(\Leftrightarrow-m-4< 0\Leftrightarrow m>-4\)
- Xét pt hoành độ gd....:
x2-(m-1)x-m-4=0 (1)
- để (P) cắt (d) tại 2 đm nằm về 2 phía của trục tung thì pt(1) có 2 nghiệm trái dấu nhau
- \(\left\{{}\begin{matrix}\Delta=\left(m-1\right)^2-4\left(-m-4\right)>0\\P=x_1x_2=-m-4< 0\Leftrightarrow m>-4\end{matrix}\right.\)
Vậy với m>-4 thì ....