giải pt nghiệm sau: \(x^2-y^2=7\)
giải pt nghiệm nguyên 2^x+7=y^2
- Với \(x< 0\Rightarrow2^x\notin Z\Rightarrow2^x+7\notin Z\) pt vô nghiệm
- Với \(x=0\) ko thỏa mãn
- Với \(x=1\Rightarrow y=\pm3\)
- Với \(x>1\Rightarrow2^x+7\) luôn lẻ \(\Rightarrow y^2\) lẻ \(\Rightarrow y\) lẻ \(\Rightarrow y=2k+1\)
\(\Rightarrow2^x+7=\left(2k+1\right)^2\)
\(\Rightarrow2^x+6=4k\left(k+1\right)\)
\(\Rightarrow4k\left(k+1\right)-2^x=6\)
Do \(x>1\Rightarrow2^x⋮4\Rightarrow4k\left(k+1\right)-2^x⋮4\) trong khi \(6⋮̸4\)
\(\Rightarrow\) Ko tồn tại x;k thỏa mãn
Vậy \(\left(x;y\right)=\left(1;-3\right);\left(1;3\right)\)
giải pt nghiệm nguyên dương sau :3(x^4+y^4+x^2+y^2+2)=2(x^2-x+1)(y^2-y+1)
đặt 2 cái trong ngoặc kia là a và b, phân tích đa thức thành nhân tử ở VT
rồi chuyển sang cứ tạo thành hhằng đẳng thức rồi nhóm các nhân tử còn lại chia thành 2 nhóm và úc đó thay a,b theo x, y vào ,...
Giải pt nghiệm nguyên:
1) 3(x2-xy+y2)=7(x+y)
2) 5(x2+xy+y2)=7(x+2y)
giải pt nghiệm nguyên (2x - y - 2)2 = 7(x - 2y - y2 -1)
Giải pt nghiệm nguyên: \(3x^2=y^2+2y+7\)
\(\Leftrightarrow3\left(x^2-2\right)=\left(y+1\right)^2\)
\(3\left(x^2-2\right)⋮3\Rightarrow y+1⋮3\Rightarrow\left(y+1\right)^2⋮9\)
\(\Rightarrow x^2-2⋮3\) (vô lý do \(x^2\) chia 3 luôn dư 0 hoặc 1)
Vậy pt đã cho vô nghiệm
Giải pt nghiệm nguyên sau : \(\left(x-3\right)y^2-x^2=48\)
Giải:
\(\left(x-3\right)y^2-x^2=48\)
\(\Leftrightarrow\left(x-3\right)y^2-x^2+9=57\)
\(\Leftrightarrow\left(x-3\right)y^2-\left(x^2-9\right)=57\)
\(\Leftrightarrow\left(x-3\right)y^2-\left(x-3\right)\left(x+3\right)=57\)
\(\Leftrightarrow\left(x-3\right)\left(y^2-x-3\right)=57\)
Ta có bảng:
\(x-3\) | 1 | -1 | 57 | -57 | 3 | -3 | 19 | -19 |
\(y^2-x-3\) | 57 | -57 | 1 | -1 | 19 | -19 | 3 | -3 |
x | 4 | 2 | 60 | -54 | 6 | 0 | 22 | -16 |
y | 8 | \(\sqrt{62}\) | \(2\sqrt{30}\) | \(\sqrt{6}\) | \(\sqrt{66}\) | \(2\sqrt{15}\) | \(\sqrt{82}\) | \(2\sqrt{11}\) |
nhận | loại | loại | loại | loại | loại | loại | loại |
Vậy ...
giải pt nghiện sau \(2^x+7=y^2\)
Giải phương trình nghiệm nguyên
Hướng dẫn:
Xét \(x< 0\)\(\Rightarrow2^x\notin Z\left(vôlý\right)\)
Xét \(x=0\)....
Xét \(x=1\Rightarrow...\)
Xét \(x\ge2\Rightarrow2^x⋮4\)
\(\Rightarrow\left(2^x+7\right)\equiv7\equiv3\left(mod4\right)\)
\(\Rightarrow y^2\equiv3\left(mod4\right)\)(vô lý)
...
1,,giải pt nghiệm nguyên dương sau với x ,y đôi 1 khác nhau : x^3+y^3+z^3=(x+y+z)^2
Dùng cách giải pt bậc 2 một ẩn, pt đẳng cấp 2 biến và hệ thức vi-et
Mọi người giải giúp vài bài này nhé
Giải nhanh nha, thanks nhiều
1. Tìm nghiệm nguyên của pt:7(x+y)=3(x2-xy+y2)
2. Tìm GTNN của A=\(\dfrac{2x^2-4x+5}{x^2+1}\)
3. Giải pt: x2+2x-3=\(\sqrt{-28x-7}\)
4. Giải pt: \(\sqrt{2x^2+x+6}+\sqrt{x^2+x+2}=x+\dfrac{4}{x}\)
giải phương trình nghiệm là số tự nhiên của pt sau 2(x^2-y^2)=1978
\(2\left(x^2-y^2\right)=1978=>x^2-y^2=98< =>\left(x-y\right)\left(x+y\right)=23.43\)
vì x,y là số tự nhiên nên xảy ra các TH sau :
TH1:
\(\left\{{}\begin{matrix}x-y=23\\x+y=43\end{matrix}\right.< =>\left\{{}\begin{matrix}x=33\\y=10\end{matrix}\right.\)
TH2:
\(\left\{{}\begin{matrix}x-y=1\\x+y=23.43\end{matrix}\right.< =>\left\{{}\begin{matrix}x=495\\y=494\end{matrix}\right.\)
vậy ....