Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
VanCan
Xem chi tiết
Le Nguyen Minh Khoa
Xem chi tiết
Huyền Minh Lam Nguyệt
Xem chi tiết
Như
3 tháng 5 2018 lúc 23:09

a + b + 2ab = 24

<=> a+b = 24 - 2ab

<=> (a +b)^2 = (24 - 2ab)^2

<=> a^2 + b^2 + 2ab = 4a^2*b^2 - 96ab + 576

<=> a^2+b^2 = 4a^2*b^2 - 98ab + 576

Q = a^2 + b^2 = 4a^2*b^2 - 98ab + 576

= 4a^2*b^2 - 2*2*a*b*24,5 + 600,25 - 24,25

= (2ab - 24,5)^2 - 24,25

có: (2ab - 24,5)^2 ≥ 0

=> (2ab - 24,5)^2 - 24,25 ≥ -24,25

vậy gtnn của Q = -24,25 = -97/4

thanh tam tran
Xem chi tiết
tôi thích hoa hồng
5 tháng 2 2017 lúc 14:18

a+b=0 => a=(-b)

=>A=a^2+b^2=a^2+(-a)^2=a^2+a^2=2.a^2\(\ge\)2.0=0

Dấu = xảy ra khi a^2=0 =>a=0 =>b=0

Vậy Amin=0 khi và chỉ khi a=b=0

Phạm Châu
Xem chi tiết
Nguyễn Thị Huyền Diệp
Xem chi tiết
Nguyễn Hoàng Minh
29 tháng 11 2021 lúc 8:17

\(a+b\ge2\sqrt{ab}\Leftrightarrow2\sqrt{ab}\le4\Leftrightarrow ab\le4\)

\(P=\left(\dfrac{2}{a^2+b^2}+\dfrac{1}{ab}\right)+\dfrac{2}{ab}+2ab+\dfrac{32}{ab}\\ \Leftrightarrow P=2\left(\dfrac{1}{a^2+b^2}+\dfrac{1}{2ab}\right)+\dfrac{2}{ab}+2ab+\dfrac{32}{ab}\\ \Leftrightarrow P\ge2\cdot\dfrac{4}{a^2+b^2+2ab}+2\sqrt{\dfrac{32}{ab}\cdot2ab}+\dfrac{2}{4}\\ \Leftrightarrow P\ge\dfrac{8}{\left(a+b\right)^2}+2\sqrt{64}+\dfrac{1}{2}\\ \Leftrightarrow P\ge\dfrac{8}{16}+16+\dfrac{1}{2}=17\)

Dấu \("="\Leftrightarrow a=b=2\)

Nguyen Thi Thanh Xuan
Xem chi tiết
phan tuan cuong
Xem chi tiết
Nyatmax
31 tháng 8 2019 lúc 14:20

Ta co:\(1\ge a+b\ge2\sqrt{ab}\Rightarrow ab\le\frac{1}{4}\)

Dat \(P=a^2+b^2+\frac{1}{a^2}+\frac{1}{b^2}\)

\(=a^2+\frac{1}{16a^2}+b^2+\frac{1}{16b^2}+\frac{15}{16}\left(\frac{1}{a^2}+\frac{1}{b^2}\right)\)

\(=a^2+\frac{1}{16a^2}+b^2+\frac{1}{16b^2}+\frac{15}{16}.\frac{a^2+b^2}{a^2b^2}\ge\frac{1}{2}+\frac{1}{2}+\frac{15}{16}.\frac{2}{ab}\ge1+\frac{15}{16}.\frac{2}{\frac{1}{4}}=\frac{17}{2}\)

Dau '=' xay ra \(a=b=\frac{1}{2}\)

Vay \(P_{min}=\frac{17}{2}\)khi \(a=b=\frac{1}{2}\)

Tôi Là Ai
Xem chi tiết