Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
Mai Ngọc
Xem chi tiết
Bá đạo sever là tao
29 tháng 10 2016 lúc 0:00

phâm tích nó thành HĐT 

r` xét trường hợp

123x0awf10

Mai Ngọc
29 tháng 10 2016 lúc 20:19

k phân tích đc, nếu phân tích đc thì t đã không phải đăng lên đay làm gì cho mệt

Nguyễn Nhật
Xem chi tiết
Akai Haruma
5 tháng 1 2023 lúc 18:55

Lời giải:

ĐKĐB $\Leftrightarrow (x^2+4y^2-4xy)+8x=5$

$\Leftrightarrow (x-2y)^2+8x=5$.

Đặt $x-2y=a; x=b$ thì bài toán trở thành:

Cho $a,b$ thực thỏa mãn $a^2+8b=5$. Tìm max của $B=-2a+8b$

Áp dụng BĐT AM-GM:

$a^2+1\geq 2\sqrt{a^2}=2|a|\geq -2a$

$\Rightarrow a^2+1\geq -2a$

$\Rightarrow a^2+8b+1\geq -2a+8b$

$\Leftrightarrow 6\geq B$. Vậy $B_{\max}=6$

nguyễn thị hải yến
Xem chi tiết
Trần Tuấn Hoàng
12 tháng 2 2023 lúc 9:40

\(3x^2+y^2+4xy=5x+2y+1\)

\(\Leftrightarrow3x^2+x\left(4y-5\right)+\left(y^2-2y-1\right)=0\left(1\right)\)

Coi phương trình (1) là phương trình ẩn x tham số y, ta có:

\(\Delta=\left(4y-5\right)^2-3.4.\left(y^2-2y-1\right)\)

\(=16y^2-40y+25-12y^2+24y+12\)

\(=4y^2-16y+37\)

Để phương trình (1) có nghiệm nguyên thì \(\Delta\) phải là số chính phương hay \(\Delta=4y^2-16y+37=a^2\) (a là số tự nhiên).

\(\Rightarrow4y^2-16y+16+21=a^2\)

\(\Rightarrow a^2-\left(2y-4\right)^2=21\)

\(\Rightarrow\left(a-2y+4\right)\left(a+2y-4\right)=21\)

\(\Rightarrow a-2y+4;a+2y-4\) là các ước số của 21.

Với \(y\ge2\Rightarrow a-2y+4\le a+2y-4\) và \(a+2y-4\ge0\) Lập bảng:

a-2y+413
a+2y-4217
a115
y7

3

Với \(y\ge2\Rightarrow a-2y+4\le a+2y-4\) và \(a+2y-4\ge0\) Lập bảng:

a-2y+4217
a+2y-413
a115
y-3(loại vì y>0)1

Với a=11, y=7. Phương trình (1) có 2 nghiệm:

\(x_1=\dfrac{-\left(4.7-5\right)+\sqrt{11^2}}{6}=-2\) (loại vì x>0)

\(x_2=\dfrac{-\left(4.7-5\right)-\sqrt{11^2}}{6}=-\dfrac{17}{3}\left(loại\right)\)

Với \(a=5;y=3\). Phương trình (1) có 2 nghiệm:

\(x_1=\dfrac{-\left(4.3-5\right)+\sqrt{5^2}}{6}=-\dfrac{1}{3}\left(loại\right)\)

\(x_2=\dfrac{-\left(4.3-5\right)-\sqrt{5^2}}{6}=-2\) (loại vì x>0)

Với \(a=5;y=1\). Phương trình (1) có 2 nghiệm:

\(x_1=\dfrac{-\left(4.1-5\right)+\sqrt{5^2}}{6}=1\)

\(x_2=\dfrac{-\left(4.1-5\right)-\sqrt{5^2}}{6}=-\dfrac{2}{3}\left(loại\right)\)

Vậy x,y nguyên dương thỏa mãn phương trình trên là \(x=y=1\)

 

Trần Tuấn Hoàng
12 tháng 2 2023 lúc 16:29

Dòng 15 từ dưới đếm lên, sửa:

Với \(y< 2\Rightarrow a-2y+4>a+2y-4\) và \(a-2y+4>0\). Lập bảng:

Nguyễn Thị Mỹ Bình
Xem chi tiết
Nguyễn Minh Châu
Xem chi tiết
☆MĭηɦღAηɦ❄
21 tháng 8 2020 lúc 9:18

\(3x^2+y^2+4xy-8x-2y=0\)

\(\Leftrightarrow4x^2+4xy+y^2-4x-2y+1-x^2-4x-4=-3\)

\(\Leftrightarrow\left(2x+y-1\right)^2-\left(x+2\right)^2=-3\)

\(\Leftrightarrow\left(2x+y-1-x-2\right)\left(2x+y-1+x+2\right)=-3\)

\(\Leftrightarrow\left(x+y-3\right)\left(3x+y+1\right)=-3\)

Do \(x,y\in Z\Rightarrow x+y-3;3x+y+1\inƯ\left(3\right)=\left\{\pm1;\pm3\right\}\)

Bạn lập bảng xét ước rồi tìm ra x,y thỏa mãn

Vậy \(\left(x,y\right)=\left(0,2\right);\left(-4,8\right);\left(-4;10\right);\left(0,0\right)\)

Khách vãng lai đã xóa
Nguyễn Thu Huyền
Xem chi tiết
Đoàn Thanh Bảo An
Xem chi tiết
KAl(SO4)2·12H2O
25 tháng 10 2017 lúc 19:37

Theo gt: x+y≤ 2 (x + 2y) x+ y≤ 2(x + 2y)

Ta có: (x + 2y)≤ (12 + 22)(x+ y2) ≤ 5.2(x + 2y)(x + 2y)2 ≤ (1+ 22)(x2+y2) ≤ 5.2(x+2y)

⇒ x + 2y ≤ 10 ⇒ x + 2y ≤ 10 (đpcm)

Ha Nguyen Dang
Xem chi tiết
Nguyễn Đa Vít
Xem chi tiết
Nguyễn Văn Tuấn Anh
4 tháng 8 2019 lúc 21:14

Ta có: \(x^2+4y^2+x=4xy+2y+2\)

        \(\Rightarrow x^2-4xy+4y^2+x-2y=2\)

      \(\Rightarrow\left(x-2y\right)^2+\left(x-2y\right)=2\)

      \(\Rightarrow\left(x-2y\right)\left(x-2y+1\right)=2\) 

Tìm các TH

Mặt khác : \(4x^2+4xy+y^2=2x+y+56\) 

                \(\Rightarrow\left(2x+y\right)^2-\left(2x+y\right)=56\)

               \(\Rightarrow\left(2x+y\right)\left(2x+y-1\right)=56\)

Tìm các TH