Tìm x biết |x - 2020|+ |x - 2021|= x - 2022
Tìm Bmin biết B= \(\dfrac{\left|x-2020\right|+2021}{\left|x-2021\right|+2022}\)
3 coins cho ng trl đúng
Tìm Bmin biết B= \(\dfrac{\left|x-2020\right|+2021}{\left|x-2021\right|+2022}\)
3 coins cho ng trl đúng
\(=\dfrac{\left|x-2020\right|+2022-1}{\left|x-2020\right|+2022}=1-\dfrac{1}{\left|x-2020\right|+2022}\\ mà\left|x-2020\right|\ge0\\ \Rightarrow\left|x-2022\right|+2022\ge2022\)
\(\Rightarrow\dfrac{1}{\left|x-2020\right|+2022}\le\dfrac{1}{2022}\\ =1-\dfrac{1}{\left|x-2020\right|+2022}\ge1-\dfrac{1}{2022}\\ =\dfrac{2021}{2022}\\ \Rightarrow B_{min}=\dfrac{2021}{2022}.tại.x-2020=0\Rightarrow x=2020\)
tìm x y z thoả mãn đẳng thức 1/x2022+1/y2022+1/z2022=1/x2021+1/y2021+1/z2021=1/x2020+1/y2020+1/z2020
Tìm GTNN của M
M= |x-2020|+|x-2021|+|x-2022|
Tìm GTNN: M = |x-2019| + |x-2020| + |x-2021| + |x-2022| cíu
Tìm giá trị nhỏ nhất của: A = là:
A.
2 tại x = 2021
B.
-1 tại x = 2020
C.
2020 tại x = 2021
D.
1 tại x = 2022
tìm x
(x+1)/2023 + (x+2)/2022=(x+3)/2021 + (x+4)/2020
\(\dfrac{x+1}{2023}+\dfrac{x+2}{2022}=\dfrac{x+3}{2021}+\dfrac{x+4}{2020}\\ \Leftrightarrow\dfrac{x+1}{2023}+1+\dfrac{x+2}{2022}+1=\dfrac{x+3}{2021}+1+\dfrac{x+4}{2020}+1\\ \Leftrightarrow\dfrac{x+1+2023}{2023}+\dfrac{x+2+2022}{2022}-\dfrac{x+3+2021}{2021}-\dfrac{x+4+2020}{2020}=0\\ \Leftrightarrow\left(x+2024\right)\times\left(\dfrac{1}{2023}+\dfrac{1}{2022}-\dfrac{1}{2021}-\dfrac{1}{2020}\right)=0\\ \Rightarrow x+2024=0:\left(\dfrac{1}{2023}+\dfrac{1}{2022}-\dfrac{1}{2021}-\dfrac{1}{2020}\right)\\ \Rightarrow x+2024=0\\ \Rightarrow x=-2024\)
`(x+1)/2023+(x+2)/2022=(x+3)/2021+(x+4)/2020`
`=>(x+1)/2023+1+(x+2)/2022+1=(x+3)/2021+1+(x+4)/2020+1`
`=>(x+2024)/2023+(x+2024)/2022=(x+2024)/2021+(x+2024)/2020`
`=>(x+2024)/2023+(x+2024)/2022-(x+2024)/2021-(x+2024)/2020=0`
`=>(x+2024).(1/2023+1/2022-1/2021-1/2020)=0`
Vì `1/2023+1/2022-1/2021-1/2020` `\ne` `0`
`=> x+2024=0`
`=>x=-2024`
tìm x nguyên 2023+2022+2021+2020+...+x=2023
Cho \(\dfrac{x}{2020}+\dfrac{y}{2021}+\dfrac{z}{2022}=1\) và \(\dfrac{2020}{x}+\dfrac{2021}{y}+\dfrac{2022}{z}=0\) \(\left(x,y,z\ne0\right)\)
Chứng minh rằng \(\dfrac{x^2}{2020^2}+\dfrac{y^2}{2021^2}+\dfrac{z^2}{2022^2}=1\)