2n+3 va 4n+8
chung minh rang day la 2 so nguyen to cung nhau
chung to rang 2n+3 va 4n+8 la 2 so nguyen to cung nhau
Đặt UCLN(2n + 3 ; 4n + 8) = d
2n + 3 chia hết cho d => 4n + 6 chia het cho d
< = > [(4n + 8) - (4n + 6)] chia hết cho d
2 chia hết cho d mà 2n + 3 lẻ
=> UCLN(2n + 3 ; 4n + 8) = 1
Vì 2n+3 và 4n+8 nguyên tố cùng nhau nên có : ƯCLN ( 2n+3 , 4n+8 ) = 1
Có : 2n + 3 = 2n.2+3.2
= 4n +6
Lại có : (4n+8) - (4n+6) chia hết cho d
= 2 chia hết cho d
Nhưng 2 là số lẻ nên ƯCLN ( 2n+3,4n+8)=1
Vậy 2n+3 và 4n+8 nguyên tố cùng nhau
Tick cho mình nha !!!!!!!
chung minh rang cac so sau day nguyen to cung nhau
A,3n+1 va 4n+1
B,2n+5 va 4n+9
chung minh rang voi moi so tu nhien n, cac so sau la hai so nguyen to cung nhau:
a) 7n + 10 va 5n + 7
b) 2n +3 va 4n +8
a) Gọi d là ƯC( 7n + 10 ; 5n + 7 )
=> \(\hept{\begin{cases}7n+10⋮d\\5n+7⋮d\end{cases}}\Rightarrow\hept{\begin{cases}5\left(7n+10\right)⋮d\\7\left(5n+7\right)⋮d\end{cases}}\Rightarrow\hept{\begin{cases}35n+50⋮d\\35n+49⋮d\end{cases}}\)
=> ( 35n + 50 ) - ( 35n + 49 ) chia hết cho d
=> 35n + 50 - 35n - 49 chia hết cho d
=> 1 chia hết cho d
=> d = 1
=> ƯCLN( 7n + 10 ; 5n + 7 ) = 1
=> 7n + 10 ; 5n + 7 là hai số nguyên tố cùng nhau ( đpcm )
b) Gọi d là ƯC( 2n + 3 ; 4n + 8 )
=> \(\hept{\begin{cases}2n+3⋮d\\4n+8⋮d\end{cases}}\Rightarrow\hept{\begin{cases}2\left(2n+3\right)⋮d\\4n+8⋮d\end{cases}}\Rightarrow\hept{\begin{cases}4n+6⋮d\\4n+8⋮d\end{cases}}\)
=> ( 4n + 8 ) - ( 4n + 6 ) chia hết cho d
=> 4n + 8 - 4n - 6 chia hết cho d
=> 2 chia hết cho d
=> d ∈ { 1 ; 2 }
Với d = 2 => \(2n+3⋮̸̸d\)
=> d = 1
=> ƯCLN( 2n + 3 ; 4n + 8 ) = 1
=> 2n + 3 ; 4n + 8 là hai số nguyên tố cùng nhau ( đpcm )
1)n+1 va 3n+4 la nguyen to cung nhau
2)2n+3 va 4n+8 la 2 so nguyen to cung nhau
Gọi d là ƯC (n + 1; 3n + 4) Nên ta có :
n + 1 ⋮ d và 3n + 4 ⋮ d
<=> 3 (n + 1) ⋮ d và 3n + 4 ⋮ d
<=> 3n + 3 ⋮ d và 3n + 4 ⋮ d
=> (3n + 4) - (3n + 3) ⋮ d
=> 1 ⋮ d => d = 1
Vì ƯC (n + 1; 3n + 4) = 1 nên n + 1 và 3n + 4 là NT cùng nhau ( dpcm )
Ý 2 tương tự
gọi ước chung lớn nhất của n+1 và 3n+4 là d
ta có n+1 chia hết cho d => 3(n+1) chia hết cho d => 3n+ 3 chia hết cho d
3n+4 chia hết cho d
=> 3n+4 - ( 3n + 3) chia hết cho d
=> 3n +4 - 3n - 3 chia hết cho d
=> 1 chia hết cho d
=> d = 1
vậy..............
gọi ước chung lớn nhất của ...............là d
ta có 2n + 3 chia hết cho d
=> 2(2n+3) chia hết cho d
=> 4n + 6 chia hết cho d
4n + 8 chia hết cho d
=> 4n + 8 - ( 4n + 6) chia hết cho d
=> 4n + 8 - 4n -6 chia hết cho d
=> 2 chia hết cho d
=> d = 1 hoặc d = 2
mà 2n +3 là số lẻ nên không chia hết cho 2
=> d = 1
vậy ...........
chung minh rang n+1 va 2n+3 la 2 so nguyen to cung nhau
Gọi ƯCLN(n + 1; 2n + 3) = d
Ta có : n + 1 chia hết cho d => 2(n + 1) chia hết cho d => 2n + 2 chia hết cho d
2n + 3 chia hết cho d
=> (2n + 3) - (2n + 2) chia hết cho d
=> 1 chia hết cho d
=> d = 1 hoặc -1
=> n + 1 và 2n + 3 nguyên tố cùng nhau
Gọi ƯCLN(n + 1; 2n + 3) là d (d thuộc N*)
=> n + 1 chia hết cho d => 2(n + 1) chia hết cho d
2n + 3 chia hết cho d
=> (2n + 3) - 2(n + 1) chia hết cho d
=> 2n + 3 - 2n - 2 chia hết cho d
=> 1 chia hết cho d
=> d = 1 (Vì d thuộc N*)
=> ƯCLN(n + 1; 2n + 3) = 1
hay 2 số này nguyên tố cùng nhau
Vậy...
Đặt UCLN(n + 1 ; 2n + 3) = d (1)
n + 1 chia hết cho d=> 2n + 2 chia hết cho d
mà 2n + 3 chia hết cho d
=> [(2n +3)-(2n+2)] chia hết cho d
1 chia het cho d => d = 1
Thay d= 1 vào (1) ta có: UCLN(n + 1 ; 2n + 3) = 1
=> ĐPCM
Bai1 a,cho n thuoc N. Chung minh rang 6n+5 va 4n+3 la 2 so nguyen to cung nhau
b, tim so nguyen x sao cho x+2016 la so nguyen duong nho nhat
Bài 1
a,
Gọi d là ƯCLN(6n+5;4n+3)
\(\Rightarrow\hept{\begin{cases}6n+5⋮d\\4n+3⋮d\end{cases}\Rightarrow\hept{\begin{cases}2\left(6n+5\right)⋮d\\3\left(4n+3\right)⋮d\end{cases}\Rightarrow}\hept{\begin{cases}12n+10⋮d\\12n+9⋮d\end{cases}}}\)
\(\Rightarrow12n+10-\left(12n+9\right)⋮d\)
\(\Rightarrow1⋮d\)
\(\Rightarrow\) d=1 hay ƯCLN (6n+5;4n+3) =1
Vậy 6n+5 và 4n+3 là 2 số nguyên tố cùng nhau
b, Vì số nguyên dương nhỏ nhất là số 1
=> x+ 2016 = 1
=> x= 1-2016
x= - 2015
Đặt \(6n+5;4n+3=d\left(d\inℕ^∗\right)\)
\(6n+5⋮d\Rightarrow12n+10⋮d\)
\(4n+3⋮d\Rightarrow12n+9⋮d\)
Suy ra : \(12n+10-12n-9⋮d\)hay \(1⋮d\)
Vậy ta có đpcm
chung minh rang 2n+3 va 3n+5 la hai so nguyen to cung nhau (n thuoc N*)
Gọi ƯCLN ( 2n + 3 , 3n + 5 ) = d.
Ta có : 2n + 3 chia hết cho d.
3n + 5 chia hết cho d.
=> 3( 2n + 3 ) chia hết cho d.
=> 2(3n + 5 ) chia hết cho d.
=> 6n + 9 chia hết cho d.
=> 6n +10 chia hết cho d.
Vậy ( 6n + 10 ) - ( 6n + 9 ) chia hết cho d.
= 1 chia hết cho d
=> d thuộc Ư ( 1 )
=> d = 1
Vì ƯCLN ( 2n + 3 , 3n + 5 ) = 1
Nên 2n + 3 và 3n + 5 là hai số nguyên tố cùng nhau.
gọi d là ƯCLN (2n+3;3n+5) (với n thuộc N*)
suy ra 2n+3 chia hết cho d } 3(2n+3) chia hết cho d } 6n+9 chia hết cho d
3n+5 chia hết cho d } 2(3n+5) chia hế cho d } 6n+10 chia hết cho d
suy ra [(6n+10) -(6n+9) chia hết cho d
=[(6n-6n)+(10-9)] chia hết cho d
=[0+1] chia hết cho d
=1 chia hết cho d
vì 1 chia hết cho d suy ra ƯCLN(2n+3,3n+5)=1
chung minh voi moi STN n cac so sau la 2 so nguyen to cung nhau
2n+3 va 4n+8
Ta thấy
3 ; 8 là 2 số nguyên tố cùng nhau
Khi cộng vào 2n và 4n thì cũng sẽ có 2n và 4n không cùng chia hết cho bất cứ số nào nên UCLN là 1 .
Các số có ước chung lớn nhất là 1 thì là số nguyên tố .
Ta thấy
3 ; 8 là 2 số nguyên tố cùng nhau
Khi cộng vào 2n và 4n thì cũng sẽ có 2n và 4n không cùng chia hết cho bất cứ số nào nên UCLN là 1 .
Các số có ước chung lớn nhất là 1 thì là số nguyên tố .
cho n la so tu nhien bat ki ;chung minh rang (n+3) va(2n+5) la 2 so nguyen to cung nhau
n+3 và 2n+5
gọi d là ƯCLN(n+3;2n+5) ĐK(n thuộc N)
ta có n+3 chia hết cho d và 2n+5 chia hết cho d
=>2(n+3) chia hết cho d và 2n+5 chia hết cho d
=>2n+6 chia hết cho d
=>(2n+6)-(2n+5) chia hết cho d
=>1 chia hết cho d
=> n+3 và 2n+5 NTCN
cho ý kiến nha